assign(order, kbo).
assign(eq_defs,fold).
formulas(assumptions).
% id
1 * x = x.
x * 1 = x.
% quasigroup
x * (x \ y) = y.
x \ (x * y) = y.
(x * y) / y = x.
(x / y) * y = x.
% inverses
x' * x = 1.
x * x' = 1.
% left Cheban
x * ((x * y) * z) = (y * x) * (x * z).
% R(x)^2 = L(x)^2
(u * x) * x = x * (x * u).
% LCC
x * (y * z) = ((x * y) / x) * (x * z).
% R(x^2) = L(x^2)
u * (x * x) = (x * x) * u.
end_of_list.
formulas(goals).
% Cheban
x * ((x * y) * z) = (y * (z * x)) * x.
end_of_list.
assign(order, kbo).
assign(eq_defs,fold).
formulas(assumptions).
% id
1 * x = x.
x * 1 = x.
% quasigroup
x * (x \ y) = y.
x \ (x * y) = y.
(x * y) / y = x.
(x / y) * y = x.
% inverses
x' * x = 1.
x * x' = 1.
% left Cheban
x * ((x * y) * z) = (y * x) * (x * z).
% R(x)^2 = L(x)^2
(u * x) * x = x * (x * u).
% LCC
x * (y * z) = ((x * y) / x) * (x * z).
% flexible
x * (y * x) = (x * y) * x.
end_of_list.
formulas(goals).
% Cheban
x * ((x * y) * z) = (y * (z * x)) * x.
end_of_list.
assign(order, kbo).
assign(eq_defs,fold).
formulas(assumptions).
% id
1 * x = x.
x * 1 = x.
% quasigroup
x * (x \ y) = y.
x \ (x * y) = y.
(x * y) / y = x.
(x / y) * y = x.
% inverses
x' * x = 1.
x * x' = 1.
% left Cheban
x * ((x * y) * z) = (y * x) * (x * z).
% R(x)^2 = L(x)^2
(u * x) * x = x * (x * u).
% LCC
x * (y * z) = ((x * y) / x) * (x * z).
% RAP
(y * x) * x = y * (x * x).
end_of_list.
formulas(goals).
% Cheban
x * ((x * y) * z) = (y * (z * x)) * x.
end_of_list.
assign(order, kbo).
assign(eq_defs,fold).
formulas(assumptions).
% id
1 * x = x.
x * 1 = x.
% quasigroup
x * (x \ y) = y.
x \ (x * y) = y.
(x * y) / y = x.
(x / y) * y = x.
% inverses
x' * x = 1.
x * x' = 1.
% left Cheban
x * ((x * y) * z) = (y * x) * (x * z).
% R(x)^2 = L(x)^2
(u * x) * x = x * (x * u).
% LCC
x * (y * z) = ((x * y) / x) * (x * z).
% WIP
x * (y * x)' = y'.
end_of_list.
formulas(goals).
% Cheban
x * ((x * y) * z) = (y * (z * x)) * x.
end_of_list.