assign(order, kbo).
assign(eq_defs,fold).
formulas(assumptions).
% id
1 * x = x.
x * 1 = x.
% quasigroup
x * (x \ y) = y.
x \ (x * y) = y.
(x * y) / y = x.
(x / y) * y = x.
% left Cheban
x * ((x * y) * z) = (y * x) * (x * z).
% R(x)^2 = L(x)^2
(u * x) * x = x * (x * u).
% LCC
x * (y * z) = ((x * y) / x) * (x * z).
% A is a fourth power
B * (B * (B * B)) = A.
end_of_list.
formulas(goals).
% A is in commutant (hence center)
x * A = A * x.
end_of_list.
assign(order,
kbo).
assign(eq_defs,fold).
formulas(assumptions).
% id
1 * x =
x.
x * 1 =
x.
%
quasigroup
x * (x \
y) = y.
x \ (x *
y) = y.
(x * y)
/ y = x.
(x / y)
* y = x.
x * x' =
1.
x' * x =
1.
% left Cheban
x * ((x
* y) * z) = (y * x) * (x * z).
% R(x)^2
= L(x)^2
(u * x)
* x = x * (x * u).
% LCC
x * (y *
z) = ((x * y) / x) * (x * z).
% A is a
fourth power
B * (B *
(B * B)) = A.
% so A
is in commutant
x * A =
A * x.
% C is a
sixth power
B * (B *
(B * (B * (B * B)))) = C.
end_of_list.
formulas(goals).
% C is a
WIP element
C * (x *
C)' = x'.
end_of_list.
assign(order,
kbo).
assign(eq_defs,fold).
formulas(assumptions).
% id
1 * x =
x.
x * 1 =
x.
%
quasigroup
x * (x \
y) = y.
x \ (x *
y) = y.
(x * y)
/ y = x.
(x / y)
* y = x.
x * x' =
1.
x' * x =
1.
% left Cheban
x * ((x
* y) * z) = (y * x) * (x * z).
% R(x)^2
= L(x)^2
(u * x)
* x = x * (x * u).
% LCC
x * (y *
z) = ((x * y) / x) * (x * z).
% C is a
WIP element
C * (x *
C)' = x'.
end_of_list.
formulas(goals).
% C^2 in
right nucleus
(x * y)
* (C * C) = x * (y * (C * C)).
end_of_list.