if(Prover9).
assign(order, kbo).
assign(eq_defs,fold).
end_if.
formulas(assumptions).
% identity element
0 * x = x.
x * 0 = x.
% inverses
x * x' = 0.
x' * x = 0.
% quasigroup
x * (x \ y) = y.
x \ (x * y) = y.
(x * y) / y = x.
(x / y) * y = x.
% LIP
x' * (x * y) = y.
% LAP
(x * x) * y = x * (x * y).
% left Bol (universally LIP, universally LAP)
(x * (y * x)) * z = x * (y * (x * z)).
% AIP
(x * y)' = x' * y'.
% B1y
(z * (x * A)) * z = (z * x) * (A * z).
end_of_list.
formulas(goals).
% A1x
z * ((A * y) * z) = (z * A) * (y * z).
% A2
A * ((x * y) * A) = (A * x) * (y * A).
end_of_list.
if(Prover9).
assign(order,
kbo).
assign(eq_defs,fold).
end_if.
formulas(assumptions).
%
identity element
0 * x =
x.
x * 0 =
x.
%
inverses
x * x' =
0.
x' * x =
0.
%
quasigroup
x * (x \
y) = y.
x \ (x *
y) = y.
(x * y)
/ y = x.
(x / y)
* y = x.
% LIP
x' * (x
* y) = y.
% LAP
(x * x)
* y = x * (x * y).
% left
Bol (universally LIP, universally LAP)
(x * (y
* x)) * z = x * (y * (x * z)).
% AIP
(x * y)'
= x' * y'.
% A2
A * ((x
* y) * A) = (A * x) * (y * A).
end_of_list.
formulas(goals).
% B1y
(z * (x
* A)) * z = (z * x) * (A * z).
end_of_list.
if(Prover9).
assign(order,
kbo).
assign(eq_defs,fold).
end_if.
formulas(assumptions).
%
identity element
0 * x =
x.
x * 0 =
x.
%
inverses
x * x' =
0.
x' * x =
0.
%
quasigroup
x * (x \
y) = y.
x \ (x *
y) = y.
(x * y)
/ y = x.
(x / y)
* y = x.
% LIP
x' * (x
* y) = y.
% LAP
(x * x)
* y = x * (x * y).
% left
Bol (universally LIP, universally LAP)
(x * (y
* x)) * z = x * (y * (x * z)).
% AIP
(x * y)'
= x' * y'.
% C1x
z * (A *
(z * y)) = ((z * A) * z) * y.
end_of_list.
formulas(goals).
% C2
A * (x *
(A * y)) = ((A * x) * A) * y.
end_of_list.