if(Prover9).
assign(order, kbo).
assign(eq_defs,fold).
end_if.
formulas(assumptions).
% identity element
0 * x = x.
x * 0 = x.
% quasigroup
x * (x \ y) = y.
x \ (x * y) = y.
(x * y) / y = x.
(x / y) * y = x.
% Moufang
((x * y) * x) * z = x * (y * (x * z)).
((z * x) * y) * x = z * (x * (y * x)).
(x * y) * (z * x) = x * ((y * z) * x).
(x * y) * (z * x) = (x * (y * z)) * x.
% IP
x' * (x * y) = y.
(y * x) * x' = y.
% C in commutant
C * x = x * C.
% R(u,x,y) = u R(x) R(y) R(xy)^{-1}
R(u,x,y) = ((u * x) * y) * (x * y)'.
end_of_list.
formulas(goals).
R(R(R(C,x,y),x,y),x,y) = C.
R(R(R(x,C,y),C,y),C,y) = x.
R(R(R(x,y,C),y,C),y,C) = x.
end_of_list.
if(Prover9).
assign(order,
kbo).
assign(eq_defs,fold).
end_if.
formulas(assumptions).
%
identity element
0 * x =
x.
x * 0 =
x.
%
quasigroup
x * (x \
y) = y.
x \ (x *
y) = y.
(x * y)
/ y = x.
(x / y)
* y = x.
%
Moufang
((x * y)
* x) * z = x * (y * (x * z)).
((z * x)
* y) * x = z * (x * (y * x)).
(x * y)
* (z * x) = x * ((y * z) * x).
(x * y)
* (z * x) = (x * (y * z)) * x.
% IP
x' * (x
* y) = y.
(y * x)
* x' = y.
% C and
B in commutant
C * x =
x * C.
B * x =
x * B.
% a
defined
%(x * y)
* z = (x * (y * z)) * a(x,y,z).
%
R(u,x,y) = u R(x) R(y) R(xy)^{-1}
R(u,x,y)
= ((u * x) * y) * (x * y)'.
% so
R(R(R(C,x,y),x,y),x,y)
= C.
R(R(R(x,C,y),C,y),C,y)
= x.
R(R(R(x,y,C),y,C),y,C)
= x.
% facts
R(x *
y,C,w) = R(x,C,w) * R(y,C,w).
R(x *
y,w,C) = R(x,w,C) * R(y,w,C).
end_of_list.
formulas(goals).
R(C *
B,x,y) = R(C,x,y) * R(B,x,y).
end_of_list.