aif(Prover9).

assign(order, kbo).

assign(eq_defs,fold).

end_if.

 

formulas(assumptions).

 

% identity element

0 * x = x.

x * 0 = x.

 

% quasigroup

x * (x \ y) = y.

x \ (x * y) = y.

(x * y) / y = x.

(x / y) * y = x.

 

% left Bol (universally LIP, universally LAP)

(x * (y * x)) * z = x * (y * (x * z)).

 

% A a Moufang element

A * ((x * y) * A) = (A * x) * (y * A).

 

% C in commutant

C * x = x * C.

 

% a defined

(x * y) * z = (x * (y * z)) * a(x,y,z).

 

end_of_list.

 

formulas(goals).

 

a(C * (C * C),A,x) = 0.

a(C * (C * C),x,A) = 0.

a(x,C * (C * C),A) = 0.

a(x,A,C * (C * C)) = 0.

a(A,x,C * (C * C)) = 0.

a(A,C * (C * C),x) = 0.

 

end_of_list.

 

 

 

if(Prover9).

assign(order, kbo).

assign(eq_defs,fold).

end_if.

 

formulas(assumptions).

 

% identity element

0 * x = x.

x * 0 = x.

 

% quasigroup

x * (x \ y) = y.

x \ (x * y) = y.

(x * y) / y = x.

(x / y) * y = x.

 

% left Bol (universally LIP, universally LAP)

(x * (y * x)) * z = x * (y * (x * z)).

 

% C a Moufang element

C * ((x * y) * C) = (C * x) * (y * C).

 

% C in commutant

C * x = x * C.

 

% a defined

(x * y) * z = (x * (y * z)) * a(x,y,z).

 

end_of_list.

 

formulas(goals).

 

a(C * (C * C),x,y) = 0.

a(x,C * (C * C),y) = 0.

a(x,y,C * (C * C)) = 0.

 

end_of_list.