if(Prover9).
assign(order, kbo).
assign(eq_defs,fold).
end_if.
formulas(assumptions).
% identity element
0 * x = x.
x * 0 = x.
% quasigroup
x * (x \ y) = y.
x \ (x * y) = y.
(x * y) / y = x.
(x / y) * y = x.
% left Bol (universally LIP,
universally LAP)
(x * (y * x)) * z = x * (y *
(x * z)).
% C a Moufang element
C * ((x * y) * C) = (C * x)
* (y * C).
% C in commutant
C * x = x * C.
% a defined
(x * y) * z = (x * (y * z))
* a(x,y,z).
end_of_list.
formulas(goals).
a(C,x * (x * x),y) = 0.
a(C,y,x * (x * x)) = 0.
a(x * (x * x),C,y) = 0.
a(x * (x * x),y,C) = 0.
a(y,x * (x * x),C) = 0.
a(y,C,x * (x * x)) = 0.
end_of_list.
if(Prover9).
assign(order, kbo).
assign(eq_defs,fold).
end_if.
formulas(assumptions).
% identity element
0 * x = x.
x * 0 = x.
% quasigroup
x * (x \ y) = y.
x \ (x * y) = y.
(x * y) / y = x.
(x / y) * y = x.
% left Bol (universally LIP, universally LAP)
(x * (y * x)) * z = x * (y * (x * z)).
% C a Moufang element
A * ((x * y) * A) = (A * x) * (y * A).
% C in commutant
C * x = x * C.
% a defined
(x * y) * z = (x * (y * z)) * a(x,y,z).
end_of_list.
formulas(goals).
a(C,A * (A * A),x) = 0.
a(C,x,A * (A * A)) = 0.
a(A * (A * A),C,x) = 0.
a(A * (A * A),x,C) = 0.
a(x,A * (A * A),C) = 0.
a(x,C,A * (A * A)) = 0.
end_of_list.