if(Prover9).
assign(order, kbo).
assign(eq_defs,fold).
end_if.
formulas(assumptions).
% identity element
0 * x = x.
x * 0 = x.
% quasigroup
x * (x \ y) = y.
x \ (x * y) = y.
(x * y) / y = x.
(x / y) * y = x.
% 2-sided inverses
x' * x = 0.
x * x' = 0.
% LIP
x' * (x * y) = y.
% LAP
x * (x * y) = (x * x) * y.
% left Bol (universally LIP, universally LAP)
(x * (y * x)) * z = x * (y * (x * z)).
% C is an A2-element
C * ((x * y) * C) = (C * x) * (y * C).
% C in commutant
C * x = x * C.
% R(u,x,y) = u R(x) R(y) R(xy)^{-1}
R(u,x,y) = ((u * x) * y) / (x * y).
end_of_list.
formulas(goals).
R(R(R(C,A,B),A,B),A,B) = C.
end_of_list.
if(Prover9).
assign(order,
kbo).
assign(eq_defs,fold).
end_if.
formulas(assumptions).
%
identity element
0 * x =
x.
x * 0 =
x.
%
quasigroup
x * (x \
y) = y.
x \ (x *
y) = y.
(x * y)
/ y = x.
(x / y)
* y = x.
%
2-sided inverses
x' * x =
0.
x * x' =
0.
% LIP
x' * (x
* y) = y.
% LAP
x * (x *
y) = (x * x) * y.
% left
Bol (universally LIP, universally LAP)
(x * (y
* x)) * z = x * (y * (x * z)).
% A is
an A2-element
A * ((x
* y) * A) = (A * x) * (y * A).
% C in
commutant
C * x =
x * C.
%
R(u,x,y) = u R(x) R(y) R(xy)^{-1}
R(u,x,y)
= ((u * x) * y) / (x * y).
end_of_list.
formulas(goals).
R(R(R(C,A,B),A,B),A,B)
= C.
end_of_list.
if(Prover9).
assign(order,
kbo).
assign(eq_defs,fold).
end_if.
formulas(assumptions).
%
identity element
0 * x =
x.
x * 0 =
x.
%
quasigroup
x * (x \
y) = y.
x \ (x *
y) = y.
(x * y)
/ y = x.
(x / y)
* y = x.
%
2-sided inverses
x' * x =
0.
x * x' =
0.
% LIP
x' * (x
* y) = y.
% LAP
x * (x *
y) = (x * x) * y.
% left
Bol (universally LIP, universally LAP)
(x * (y
* x)) * z = x * (y * (x * z)).
% B is
an A2-element
B * ((x
* y) * B) = (B * x) * (y * B).
% C in
commutant
C * x =
x * C.
%
R(u,x,y) = u R(x) R(y) R(xy)^{-1}
R(u,x,y)
= ((u * x) * y) / (x * y).
end_of_list.
formulas(goals).
R(R(R(C,A,B),A,B),A,B)
= C.
end_of_list.
if(Prover9).
assign(order, kbo).
assign(eq_defs,fold).
end_if.
formulas(assumptions).
% identity element
0 * x = x.
x * 0 = x.
% quasigroup
x * (x \ y) = y.
x \ (x * y) = y.
(x * y) / y = x.
(x / y) * y = x.
% 2-sided inverses
x' * x = 0.
x * x' = 0.
% LIP
x' * (x * y) = y.
% LAP
x * (x * y) = (x * x) * y.
% left Bol (universally LIP, universally LAP)
(x * (y * x)) * z = x * (y * (x * z)).
% C is an A2-element
C * ((x * y) * C) = (C * x) * (y * C).
% C in commutant
C * x = x * C.
% L(u,x,y) = u L(x) L(y) L(yx)^{-1}
L(u,x,y) = (y * x)' * (y * (x * u)).
end_of_list.
formulas(goals).
L(L(L(C,A,B),A,B),A,B) = C.
end_of_list.
if(Prover9).
assign(order,
kbo).
assign(eq_defs,fold).
end_if.
formulas(assumptions).
%
identity element
0 * x =
x.
x * 0 =
x.
%
quasigroup
x * (x \
y) = y.
x \ (x *
y) = y.
(x * y)
/ y = x.
(x / y)
* y = x.
%
2-sided inverses
x' * x =
0.
x * x' =
0.
% LIP
x' * (x
* y) = y.
% LAP
x * (x *
y) = (x * x) * y.
% left
Bol (universally LIP, universally LAP)
(x * (y
* x)) * z = x * (y * (x * z)).
% A is
an A2-element
A * ((x
* y) * A) = (A * x) * (y * A).
% C in
commutant
C * x =
x * C.
%
L(u,x,y) = u L(x) L(y) L(yx)^{-1}
L(u,x,y)
= (y * x)' * (y * (x * u)).
end_of_list.
formulas(goals).
L(L(L(C,A,B),A,B),A,B)
= C.
end_of_list.
if(Prover9).
assign(order,
kbo).
assign(eq_defs,fold).
end_if.
formulas(assumptions).
%
identity element
0 * x =
x.
x * 0 =
x.
%
quasigroup
x * (x \
y) = y.
x \ (x *
y) = y.
(x * y)
/ y = x.
(x / y)
* y = x.
%
2-sided inverses
x' * x =
0.
x * x' =
0.
% LIP
x' * (x
* y) = y.
% LAP
x * (x *
y) = (x * x) * y.
% left
Bol (universally LIP, universally LAP)
(x * (y
* x)) * z = x * (y * (x * z)).
% B is
an A2-element
B * ((x
* y) * B) = (B * x) * (y * B).
% C in
commutant
C * x =
x * C.
%
L(u,x,y) = u L(x) L(y) L(yx)^{-1}
L(u,x,y)
= (y * x)' * (y * (x * u)).
end_of_list.
formulas(goals).
L(L(L(C,A,B),A,B),A,B)
= C.
end_of_list.
if(Prover9).
assign(order,
kbo).
assign(eq_defs,fold).
end_if.
formulas(assumptions).
%
identity element
0 * x =
x.
x * 0 =
x.
%
quasigroup
x * (x \
y) = y.
x \ (x *
y) = y.
(x * y)
/ y = x.
(x / y)
* y = x.
%
2-sided inverses
x' * x =
0.
x * x' =
0.
% LIP
x' * (x
* y) = y.
% LAP
x * (x *
y) = (x * x) * y.
% left
Bol (universally LIP, universally LAP)
(x * (y
* x)) * z = x * (y * (x * z)).
% C is
an A2-element
C * ((x
* y) * C) = (C * x) * (y * C).
% C in
commutant
C * x =
x * C.
%
R(u,x,y) = u R(x) R(y) R(xy)^{-1}
R(u,x,y)
= ((u * x) * y) / (x * y).
end_of_list.
formulas(goals).
R(R(R(x,C,A),C,A),C,A)
= x.
end_of_list.
if(Prover9).
assign(order,
kbo).
assign(eq_defs,fold).
end_if.
formulas(assumptions).
%
identity element
0 * x =
x.
x * 0 =
x.
%
quasigroup
x * (x \
y) = y.
x \ (x *
y) = y.
(x * y)
/ y = x.
(x / y)
* y = x.
%
2-sided inverses
x' * x =
0.
x * x' =
0.
% LIP
x' * (x
* y) = y.
% LAP
x * (x *
y) = (x * x) * y.
% left
Bol (universally LIP, universally LAP)
(x * (y
* x)) * z = x * (y * (x * z)).
% C is
an A2-element
C * ((x
* y) * C) = (C * x) * (y * C).
% C in
commutant
C * x =
x * C.
%
R(u,x,y) = u R(x) R(y) R(xy)^{-1}
R(u,x,y)
= ((u * x) * y) / (x * y).
end_of_list.
formulas(goals).
R(R(R(x,A,C),A,C),A,C)
= x.
end_of_list.
if(Prover9).
assign(order,
kbo).
assign(eq_defs,fold).
end_if.
formulas(assumptions).
%
identity element
0 * x =
x.
x * 0 =
x.
%
quasigroup
x * (x \
y) = y.
x \ (x *
y) = y.
(x * y)
/ y = x.
(x / y)
* y = x.
%
2-sided inverses
x' * x =
0.
x * x' =
0.
% LIP
x' * (x
* y) = y.
% LAP
x * (x *
y) = (x * x) * y.
% left
Bol (universally LIP, universally LAP)
(x * (y
* x)) * z = x * (y * (x * z)).
% A is
an A2-element
A * ((x
* y) * A) = (A * x) * (y * A).
% C in
commutant
C * x =
x * C.
%
R(u,x,y) = u R(x) R(y) R(xy)^{-1}
R(u,x,y)
= ((u * x) * y) / (x * y).
end_of_list.
formulas(goals).
R(R(R(x,C,A),C,A),C,A)
= x.
end_of_list.
if(Prover9).
assign(order,
kbo).
assign(eq_defs,fold).
end_if.
formulas(assumptions).
%
identity element
0 * x =
x.
x * 0 =
x.
%
quasigroup
x * (x \
y) = y.
x \ (x *
y) = y.
(x * y)
/ y = x.
(x / y)
* y = x.
%
2-sided inverses
x' * x =
0.
x * x' =
0.
% LIP
x' * (x
* y) = y.
% LAP
x * (x *
y) = (x * x) * y.
% left
Bol (universally LIP, universally LAP)
(x * (y
* x)) * z = x * (y * (x * z)).
% A is
an A2-element
A * ((x
* y) * A) = (A * x) * (y * A).
% C in
commutant
C * x =
x * C.
%
L(u,x,y) = u L(x) L(y) L(yx)^{-1}
%L(u,x,y)
= (y * x)' * (y * (x * u)).
%
R(u,x,y) = u R(x) R(y) R(xy)^{-1}
R(u,x,y)
= ((u * x) * y) / (x * y).
end_of_list.
formulas(goals).
R(R(R(x,A,C),A,C),A,C)
= x.
end_of_list.
if(Prover9).
assign(order,
kbo).
assign(eq_defs,fold).
end_if.
formulas(assumptions).
%
identity element
0 * x =
x.
x * 0 =
x.
%
quasigroup
x * (x \
y) = y.
x \ (x *
y) = y.
(x * y)
/ y = x.
(x / y)
* y = x.
%
2-sided inverses
x' * x =
0.
x * x' =
0.
% LIP
x' * (x
* y) = y.
% LAP
x * (x *
y) = (x * x) * y.
% left
Bol (universally LIP, universally LAP)
(x * (y
* x)) * z = x * (y * (x * z)).
% C is
an A2-element
C * ((x
* y) * C) = (C * x) * (y * C).
% C in
commutant
C * x =
x * C.
%
L(u,x,y) = u L(x) L(y) L(yx)^{-1}
L(u,x,y)
= (y * x)' * (y * (x * u)).
end_of_list.
formulas(goals).
L(L(L(x,C,A),C,A),C,A)
= x.
end_of_list.
if(Prover9).
assign(order,
kbo).
assign(eq_defs,fold).
end_if.
formulas(assumptions).
%
identity element
0 * x =
x.
x * 0 =
x.
%
quasigroup
x * (x \
y) = y.
x \ (x *
y) = y.
(x * y)
/ y = x.
(x / y)
* y = x.
%
2-sided inverses
x' * x =
0.
x * x' =
0.
% LIP
x' * (x
* y) = y.
% LAP
x * (x *
y) = (x * x) * y.
% left
Bol (universally LIP, universally LAP)
(x * (y
* x)) * z = x * (y * (x * z)).
% C is
an A2-element
C * ((x
* y) * C) = (C * x) * (y * C).
% C in
commutant
C * x =
x * C.
%
L(u,x,y) = u L(x) L(y) L(yx)^{-1}
L(u,x,y)
= (y * x)' * (y * (x * u)).
end_of_list.
formulas(goals).
L(L(L(x,A,C),A,C),A,C)
= x.
end_of_list.
if(Prover9).
assign(order,
kbo).
assign(eq_defs,fold).
end_if.
formulas(assumptions).
%
identity element
0 * x =
x.
x * 0 =
x.
%
quasigroup
x * (x \
y) = y.
x \ (x *
y) = y.
(x * y)
/ y = x.
(x / y)
* y = x.
%
2-sided inverses
x' * x =
0.
x * x' =
0.
% LIP
x' * (x
* y) = y.
% LAP
x * (x *
y) = (x * x) * y.
% left
Bol (universally LIP, universally LAP)
(x * (y
* x)) * z = x * (y * (x * z)).
% A is
an A2-element
A * ((x
* y) * A) = (A * x) * (y * A).
% C in
commutant
C * x =
x * C.
%
L(u,x,y) = u L(x) L(y) L(yx)^{-1}
L(u,x,y)
= (y * x)' * (y * (x * u)).
end_of_list.
formulas(goals).
L(L(L(x,C,A),C,A),C,A)
= x.
end_of_list.
if(Prover9).
assign(order,
kbo).
assign(eq_defs,fold).
end_if.
formulas(assumptions).
%
identity element
0 * x =
x.
x * 0 =
x.
%
quasigroup
x * (x \
y) = y.
x \ (x *
y) = y.
(x * y)
/ y = x.
(x / y)
* y = x.
%
2-sided inverses
x' * x =
0.
x * x' =
0.
% LIP
x' * (x
* y) = y.
% LAP
x * (x *
y) = (x * x) * y.
% left
Bol (universally LIP, universally LAP)
(x * (y
* x)) * z = x * (y * (x * z)).
% A is
an A2-element
A * ((x
* y) * A) = (A * x) * (y * A).
% C in
commutant
C * x =
x * C.
%
L(u,x,y) = u L(x) L(y) L(yx)^{-1}
L(u,x,y)
= (y * x)' * (y * (x * u)).
end_of_list.
formulas(goals).
L(L(L(x,A,C),A,C),A,C)
= x.
end_of_list.