if(Prover9).
assign(order, kbo).
assign(eq_defs,fold).
end_if.
formulas(assumptions).
% identity element
0 * x = x.
x * 0 = x.
% quasigroup
x * (x \ y) = y.
x \ (x * y) = y.
(x * y) / y = x.
(x / y) * y = x.
% 2-sided inverses
x' * x = 0.
x * x' = 0.
% LIP
x' * (x * y) = y.
% LAP
x * (x * y) = (x * x) * y.
% left Bol
(universally LIP, universally LAP)
(x * (y * x)) * z = x * (y * (x * z)).
% C is an A2-element
C * ((x * y) * C) = (C * x) * (y * C).
% C in commutant
C * x = x * C.
% R(u,x,y) = u R(x)
R(y) R(xy)^{-1}
R(u,x,y) = ((u * x) *
y) / (x * y).
end_of_list.
formulas(goals).
R(x * y,C,A) = R(x,C,A) * R(y,C,A).
end_of_list.
if(Prover9).
assign(order,
kbo).
assign(eq_defs,fold).
end_if.
formulas(assumptions).
%
identity element
0 * x = x.
x * 0 =
x.
% quasigroup
x * (x \
y) = y.
x \ (x *
y) = y.
(x * y)
/ y = x.
(x / y)
* y = x.
%
2-sided inverses
x' * x =
0.
x * x' =
0.
% LIP
x' * (x
* y) = y.
% LAP
x * (x *
y) = (x * x) * y.
% left Bol (universally LIP, universally LAP)
(x * (y
* x)) * z = x * (y * (x * z)).
% C is
an A2-element
C * ((x
* y) * C) = (C * x) * (y * C).
% C in commutant
C * x =
x * C.
% R(u,x,y) = u R(x) R(y) R(xy)^{-1}
R(u,x,y) = ((u * x) * y) / (x * y).
end_of_list.
formulas(goals).
R(x * y,A,C) = R(x,A,C) * R(y,A,C).
end_of_list.
if(Prover9).
assign(order,
kbo).
assign(eq_defs,fold).
end_if.
formulas(assumptions).
%
identity element
0 * x =
x.
x * 0 =
x.
% quasigroup
x * (x \
y) = y.
x \ (x *
y) = y.
(x * y)
/ y = x.
(x / y)
* y = x.
%
2-sided inverses
x' * x =
0.
x * x' =
0.
% LIP
x' * (x
* y) = y.
% LAP
x * (x *
y) = (x * x) * y.
% left Bol (universally LIP, universally LAP)
(x * (y
* x)) * z = x * (y * (x * z)).
% A is
an A2-element
A * ((x
* y) * A) = (A * x) * (y * A).
% C in commutant
C * x = x
* C.
% R(u,x,y) = u R(x) R(y) R(xy)^{-1}
R(u,x,y) = ((u * x) * y) / (x * y).
end_of_list.
formulas(goals).
R(x * y,A,C) = R(x,A,C) * R(y,A,C).
end_of_list.
if(Prover9).
assign(order,
kbo).
assign(eq_defs,fold).
end_if.
formulas(assumptions).
% identity
element
0 * x =
x.
x * 0 =
x.
% quasigroup
x * (x \
y) = y.
x \ (x *
y) = y.
(x * y)
/ y = x.
(x / y)
* y = x.
%
2-sided inverses
x' * x =
0.
x * x' =
0.
% LIP
x' * (x
* y) = y.
% LAP
x * (x *
y) = (x * x) * y.
% left Bol (universally LIP, universally LAP)
(x * (y
* x)) * z = x * (y * (x * z)).
% A is
an A2-element
A * ((x
* y) * A) = (A * x) * (y * A).
% C in commutant
C * x =
x * C.
% R(u,x,y) = u R(x) R(y) R(xy)^{-1}
R(u,x,y) = ((u * x) * y) / (x * y).
% from
previous theorem
R(x * y,A,C) = R(x,A,C) * R(y,A,C).
end_of_list.
formulas(goals).
R(x * y,C,A) = R(x,C,A) * R(y,C,A).
end_of_list.
if(Prover9).
assign(order,
kbo).
assign(eq_defs,fold).
end_if.
formulas(assumptions).
%
identity element
0 * x =
x.
x * 0 =
x.
% quasigroup
x * (x \
y) = y.
x \ (x *
y) = y.
(x * y)
/ y = x.
(x / y)
* y = x.
%
2-sided inverses
x' * x =
0.
x * x' =
0.
% LIP
x' * (x
* y) = y.
% LAP
x * (x *
y) = (x * x) * y.
% left Bol (universally LIP, universally LAP)
(x * (y
* x)) * z = x * (y * (x * z)).
% C is
an A2-element
C * ((x
* y) * C) = (C * x) * (y * C).
% C in commutant
C * x =
x * C.
% L(u,x,y) = u L(x) L(y) L(yx)^{-1}
L(u,x,y) = (y * x)' * (y * (x * u)).
end_of_list.
formulas(goals).
L(x * y,C,A) = L(x,C,A) * L(y,C,A).
end_of_list.
if(Prover9).
assign(order,
kbo).
assign(eq_defs,fold).
end_if.
formulas(assumptions).
%
identity element
0 * x =
x.
x * 0 =
x.
% quasigroup
x * (x \
y) = y.
x \ (x *
y) = y.
(x * y)
/ y = x.
(x / y)
* y = x.
%
2-sided inverses
x' * x =
0.
x * x' =
0.
% LIP
x' * (x
* y) = y.
% LAP
x * (x *
y) = (x * x) * y.
% left Bol (universally LIP, universally LAP)
(x * (y
* x)) * z = x * (y * (x * z)).
% C is
an A2-element
C * ((x
* y) * C) = (C * x) * (y * C).
% C in commutant
C * x =
x * C.
% L(u,x,y) = u L(x) L(y) L(yx)^{-1}
L(u,x,y) = (y * x)' * (y * (x * u)).
end_of_list.
formulas(goals).
L(x * y,A,C) = L(x,A,C) * L(y,A,C).
end_of_list.
if(Prover9).
assign(order,
kbo).
assign(eq_defs,fold).
end_if.
formulas(assumptions).
%
identity element
0 * x =
x.
x * 0 =
x.
% quasigroup
x * (x \
y) = y.
x \ (x *
y) = y.
(x * y)
/ y = x.
(x / y)
* y = x.
%
2-sided inverses
x' * x =
0.
x * x' =
0.
% LIP
x' * (x
* y) = y.
% LAP
x * (x *
y) = (x * x) * y.
% left Bol (universally LIP, universally LAP)
(x * (y
* x)) * z = x * (y * (x * z)).
% A is
an A2-element
A * ((x
* y) * A) = (A * x) * (y * A).
% C in commutant
C * x =
x * C.
% L(u,x,y) = u L(x) L(y) L(yx)^{-1}
L(u,x,y) = (y * x)' * (y * (x * u)).
end_of_list.
formulas(goals).
L(x * y,A,C) = L(x,A,C) * L(y,A,C).
end_of_list.
if(Prover9).
assign(order,
kbo).
assign(eq_defs,fold).
end_if.
formulas(assumptions).
%
identity element
0 * x =
x.
x * 0 =
x.
% quasigroup
x * (x \
y) = y.
x \ (x *
y) = y.
(x * y)
/ y = x.
(x / y)
* y = x.
%
2-sided inverses
x' * x =
0.
x * x' =
0.
% LIP
x' * (x
* y) = y.
% LAP
x * (x *
y) = (x * x) * y.
% left Bol (universally LIP, universally LAP)
(x * (y
* x)) * z = x * (y * (x * z)).
% A is
an A2-element
A * ((x
* y) * A) = (A * x) * (y * A).
% C in commutant
C * x =
x * C.
% L(u,x,y) = u L(x) L(y) L(yx)^{-1}
L(u,x,y) = (y * x)' * (y * (x * u)).
end_of_list.
formulas(goals).
L(x * y,C,A) = L(x,C,A) * L(y,C,A).
end_of_list.