if(Prover9).
assign(order, kbo).
assign(eq_defs,fold).
end_if.
formulas(assumptions).
% identity element
0 * x = x.
x * 0 = x.
% inverses
x * x' = 0.
x' * x = 0.
% quasigroup
x * (x \ y) = y.
x \ (x * y) = y.
(x * y) / y = x.
(x / y) * y = x.
% left Bol
(universally LIP, universally LAP)
(x * (y * x)) * z = x * (y * (x * z)).
% LIP
x' * (x * y) = y.
% LAP
(x * x) * y = x * (x * y).
% A is A1y
z * ((x * A) * z) = (z * x) * (A * z).
end_of_list.
formulas(goals).
% B1x
(z * (A * y)) * z = (z * A) * (y * z).
end_of_list.
if(Prover9).
assign(order,
kbo).
assign(eq_defs,fold).
end_if.
formulas(assumptions).
%
identity element
0 * x =
x.
x * 0 =
x.
%
inverses
x * x' =
0.
x' * x =
0.
% quasigroup
x * (x \
y) = y.
x \ (x *
y) = y.
(x * y)
/ y = x.
(x / y)
* y = x.
% left Bol (universally LIP, universally LAP)
(x * (y
* x)) * z = x * (y * (x * z)).
% LIP
x' * (x
* y) = y.
% LAP
(x * x)
* y = x * (x * y).
% B1x
(z * (A
* y)) * z = (z * A) * (y * z).
end_of_list.
formulas(goals).
% C1y
z * (x *
(z * A)) = ((z * x) * z) * A.
end_of_list.
if(Prover9).
assign(order,
kbo).
assign(eq_defs,fold).
end_if.
formulas(assumptions).
%
identity element
0 * x =
x.
x * 0 =
x.
%
inverses
x * x' =
0.
x' * x =
0.
% quasigroup
x * (x \
y) = y.
x \ (x *
y) = y.
(x * y)
/ y = x.
(x / y)
* y = x.
% left Bol (universally LIP, universally LAP)
(x * (y
* x)) * z = x * (y * (x * z)).
% LIP
x' * (x
* y) = y.
% LAP
(x * x)
* y = x * (x * y).
% C1y
z * (x *
(z * A)) = ((z * x) * z) * A.
end_of_list.
formulas(goals).
% D1x
((A * z)
* y) * z = A * (z * (y * z)).
end_of_list.
if(Prover9).
assign(order,
kbo).
assign(eq_defs,fold).
end_if.
formulas(assumptions).
%
identity element
0 * x =
x.
x * 0 =
x.
%
inverses
x * x' =
0.
x' * x =
0.
% quasigroup
x * (x \
y) = y.
x \ (x *
y) = y.
(x * y)
/ y = x.
(x / y)
* y = x.
% left Bol (universally LIP, universally LAP)
(x * (y
* x)) * z = x * (y * (x * z)).
% LIP
x' * (x
* y) = y.
% LAP
(x * x)
* y = x * (x * y).
% D1x
((A * z)
* y) * z = A * (z * (y * z)).
end_of_list.
formulas(goals).
% D1y
((x * z)
* A) * z = x * (z * (A * z)).
end_of_list.
if(Prover9).
assign(order,
kbo).
assign(eq_defs,fold).
end_if.
formulas(assumptions).
%
identity element
0 * x =
x.
x * 0 =
x.
%
inverses
x * x' =
0.
x' * x =
0.
% quasigroup
x * (x \
y) = y.
x \ (x *
y) = y.
(x * y)
/ y = x.
(x / y)
* y = x.
% left Bol (universally LIP, universally LAP)
(x * (y
* x)) * z = x * (y * (x * z)).
% LIP
x' * (x
* y) = y.
% LAP
(x * x)
* y = x * (x * y).
% D1y
((x * z)
* A) * z = x * (z * (A * z)).
end_of_list.
formulas(goals).
% A is
A1y
z * ((x
* A) * z) = (z * x) * (A * z).
end_of_list.
if(Prover9).
assign(order,
kbo).
assign(eq_defs,fold).
end_if.
formulas(assumptions).
%
identity element
0 * x =
x.
x * 0 =
x.
%
inverses
x * x' =
0.
x' * x =
0.
% quasigroup
x * (x \
y) = y.
x \ (x *
y) = y.
(x * y)
/ y = x.
(x / y)
* y = x.
% left Bol (universally LIP, universally LAP)
(x * (y
* x)) * z = x * (y * (x * z)).
% LIP
x' * (x
* y) = y.
% LAP
(x * x)
* y = x * (x * y).
% A2
A * ((x
* y) * A) = (A * x) * (y * A).
end_of_list.
formulas(goals).
% B2
(A * (x
* y)) * A = (A * x) * (y * A).
end_of_list.
if(Prover9).
assign(order,
kbo).
assign(eq_defs,fold).
end_if.
formulas(assumptions).
%
identity element
0 * x =
x.
x * 0 =
x.
%
inverses
x * x' =
0.
x' * x =
0.
% quasigroup
x * (x \
y) = y.
x \ (x *
y) = y.
(x * y)
/ y = x.
(x / y)
* y = x.
% left Bol (universally LIP, universally LAP)
(x * (y
* x)) * z = x * (y * (x * z)).
% LIP
x' * (x
* y) = y.
% LAP
(x * x)
* y = x * (x * y).
% B2
(A * (x
* y)) * A = (A * x) * (y * A).
end_of_list.
formulas(goals).
% D2
((x * A)
* y) * A = x * (A * (y * A)).
end_of_list.
if(Prover9).
assign(order,
kbo).
assign(eq_defs,fold).
end_if.
formulas(assumptions).
%
identity element
0 * x =
x.
x * 0 =
x.
%
inverses
x * x' =
0.
x' * x =
0.
% quasigroup
x * (x \
y) = y.
x \ (x *
y) = y.
(x * y)
/ y = x.
(x / y)
* y = x.
% left Bol (universally LIP, universally LAP)
(x * (y
* x)) * z = x * (y * (x * z)).
% LIP
x' * (x
* y) = y.
% LAP
(x * x)
* y = x * (x * y).
% D2
((x * A)
* y) * A = x * (A * (y * A)).
end_of_list.
formulas(goals).
% A2
A * ((x
* y) * A) = (A * x) * (y * A).
end_of_list.