Note: that $(A2)_L$ is a subloop
is well known, so we donŐt include a proof, here.
if(Prover9).
assign(order,
kbo).
assign(eq_defs,fold).
end_if.
formulas(assumptions).
% identity element
0 * x = x.
x * 0 = x.
% inverses
x * x' = 0.
x' * x = 0.
% quasigroup
x * (x \ y) = y.
x \ (x * y) = y.
(x * y) / y = x.
(x / y) * y = x.
% LIP
x' * (x * y) = y.
% LAP
(x * x) * y = x * (x *
y).
% left Bol (universally LIP, universally LAP)
(x * (y * x)) * z = x
* (y * (x * z)).
% A and B are A1y
z * ((x * A) * z) =
(z * x) * (A * z).
z * ((x * B) * z) =
(z * x) * (B * z).
end_of_list.
formulas(goals).
% A * B, A / B, and A \ B are A1y
z * ((x * (A * B)) *
z) = (z * x) * ((A * B) * z).
z * ((x * (A / B)) *
z) = (z * x) * ((A / B) * z).
z * ((x * (A \ B)) *
z) = (z * x) * ((A \ B) * z).
end_of_list.
if(Prover9).
assign(order,
kbo).
assign(eq_defs,fold).
end_if.
formulas(assumptions).
% identity element
0 * x = x.
x * 0 = x.
% inverses
x * x' = 0.
x' * x = 0.
% quasigroup
x * (x \ y) = y.
x \ (x * y) = y.
(x * y) / y = x.
(x / y) * y = x.
% LIP
x' * (x * y) = y.
% LAP
(x * x) * y = x * (x *
y).
% left Bol (universally LIP, universally LAP)
(x * (y * x)) * z = x
* (y * (x * z)).
% A and B are A1x
z * ((A * y) * z) =
(z * A) * (y * z).
z * ((B * y) * z) =
(z * B) * (y * z).
end_of_list.
formulas(goals).
% A * B, A \ B, and A / B are A1x
z * (((A * B) * y) *
z) = (z * (A * B)) * (y * z).
z * (((A \ B) * y) *
z) = (z * (A \ B)) * (y * z).
z * (((A / B) * y) *
z) = (z * (A / B)) * (y * z).
end_of_list.