if(Prover9).
assign(order, kbo).
assign(eq_defs,fold).
end_if.
formulas(assumptions).
% identity element
0 * x = x.
x * 0 = x.
% inverses
x * x' = 0.
x' * x = 0.
% quasigroup
x * (x \ y) = y.
x \ (x * y) = y.
(x * y) / y = x.
(x / y) * y = x.
% left Bol (universally LIP, universally LAP)
(x * (y * x)) * z = x * (y * (x * z)).
% LIP
x' * (x * y) = y.
% LAP
(x * x) * y = x * (x * y).
% L(u,x,y) = u L(x) L(y) L(yx)^{-1}
L(u,x,y) = (y * x)' * (y * (x * u)).
% A is A1y
z * ((x * A) * z) = (z * x) * (A * z).
% L(A,B,C) = D.
L(A,B,C) = D.
end_of_list.
formulas(goals).
% D is A1y
z * ((x * D) * z) = (z * x) * (D * z).
end_of_list.
if(Prover9).
assign(order,
kbo).
assign(eq_defs,fold).
end_if.
formulas(assumptions).
%
identity element
0 * x =
x.
x * 0 =
x.
%
inverses
x * x' =
0.
x' * x =
0.
%
quasigroup
x * (x \
y) = y.
x \ (x *
y) = y.
(x * y)
/ y = x.
(x / y)
* y = x.
% left
Bol (universally LIP, universally LAP)
(x * (y
* x)) * z = x * (y * (x * z)).
% LIP
x' * (x
* y) = y.
% LAP
(x * x)
* y = x * (x * y).
%
L(u,x,y) = u L(x) L(y) L(yx)^{-1}
%L(u,x,y)
= (y * x)' * (y * (x * u)).
%
R(u,x,y) = u R(x) R(y) R(xy)^{-1}
R(u,x,y)
= ((u * x) * y) / (x * y).
% A is
A1y
z * ((x
* A) * z) = (z * x) * (A * z).
%
R(A,B,C) = D.
R(A,B,C)
= D.
end_of_list.
formulas(goals).
% D is
A1y
z * ((x
* D) * z) = (z * x) * (D * z).
end_of_list.
if(Prover9).
assign(order,
kbo).
assign(eq_defs,fold).
end_if.
formulas(assumptions).
%
identity element
0 * x =
x.
x * 0 =
x.
%
inverses
x * x' =
0.
x' * x =
0.
%
quasigroup
x * (x \
y) = y.
x \ (x *
y) = y.
(x * y)
/ y = x.
(x / y)
* y = x.
% left Bol
(universally LIP, universally LAP)
(x * (y
* x)) * z = x * (y * (x * z)).
% LIP
x' * (x
* y) = y.
% LAP
(x * x)
* y = x * (x * y).
% T(u,x)
= u R(x) L(x)^{-1}
T(u,x) =
x' * (u * x).
% A is
A1y
z * ((x
* A) * z) = (z * x) * (A * z).
% T(A,B)
= D.
T(A,B) =
D.
end_of_list.
formulas(goals).
% D is
A1y
z * ((x
* D) * z) = (z * x) * (D * z).
end_of_list.