if(Prover9).
assign(order, kbo).
assign(eq_defs,fold).
end_if.
formulas(assumptions).
% identity element
0 * x = x.
x * 0 = x.
% quasigroup
x * (x \ y) = y.
x \ (x * y) = y.
(x * y) / y = x.
(x / y) * y = x.
% left Bol (universally LIP, universally LAP)
(x * (y * x)) * z = x * (y * (x * z)).
% B is A1y
z * ((x * B) * z) = (z * x) * (B * z).
% C in commutant
C * x = x * C.
% a defined
(x * y) * z = (x * (y * z)) * a(x,y,z).
end_of_list.
formulas(goals).
a(C,x * (x * x),B) = 0.
a(C,B,x * (x * x)) = 0.
a(B,C,x * (x * x)) = 0.
a(B,x * (x * x),C) = 0.
a(x * (x * x),C,B) = 0.
a(x * (x * x),B,C) = 0.
end_of_list.