if(Prover9).

assign(order, kbo).

assign(eq_defs,fold).

end_if.

 

formulas(assumptions).

 

% identity element

0 * x = x.

x * 0 = x.

 

% quasigroup

x * (x \ y) = y.

x \ (x * y) = y.

(x * y) / y = x.

(x / y) * y = x.

 

% left Bol (universally LIP, universally LAP)

(x * (y * x)) * z = x * (y * (x * z)).

 

% B is A1y

z * ((x * B) * z) = (z * x) * (B * z).

 

% C in commutant

C * x = x * C.

 

% a defined

(x * y) * z = (x * (y * z)) * a(x,y,z).

 

end_of_list.

 

formulas(goals).

 

a(C,x * (x * x),B) = 0.

a(C,B,x * (x * x)) = 0.

a(B,C,x * (x * x)) = 0.

a(B,x * (x * x),C) = 0.

a(x * (x * x),C,B) = 0.

a(x * (x * x),B,C) = 0.

 

end_of_list.