if(Prover9).
assign(order, kbo).
assign(eq_defs,fold).
end_if.
formulas(assumptions).
% identity element
0 * x = x.
x * 0 = x.
% quasigroup
x * (x \ y) = y.
x \ (x * y) = y.
(x * y) / y = x.
(x / y) * y = x.
% left Bol (universally LIP, universally LAP)
(x * (y * x)) * z = x * (y * (x * z)).
% C an A1y-element
z * ((x * C) * z) = (z * x) * (C * z).
% C in commutant
C * x = x * C.
% a defined
(x * y) * z = (x * (y * z)) * a(x,y,z).
end_of_list.
formulas(goals).
a(C,x,y) * (a(C,x,y) * a(C,x,y)) = 0.
a(x,C,y) * (a(x,C,y) * a(x,C,y)) = 0.
a(x,y,C) * (a(x,y,C) * a(x,y,C)) = 0.
end_of_list.
if(Prover9).
assign(order,
kbo).
assign(eq_defs,fold).
end_if.
formulas(assumptions).
%
identity element
0 * x =
x.
x * 0 =
x.
%
quasigroup
x * (x \
y) = y.
x \ (x *
y) = y.
(x * y)
/ y = x.
(x / y)
* y = x.
% left
Bol (universally LIP, universally LAP)
(x * (y
* x)) * z = x * (y * (x * z)).
% A an
A1y-element
z * ((x
* A) * z) = (z * x) * (A * z).
% C in
commutant
C * x =
x * C.
% a
defined
(x * y)
* z = (x * (y * z)) * a(x,y,z).
end_of_list.
formulas(goals).
a(C,A,x)
* (a(C,A,x) * a(C,A,y)) = 0.
a(C,x,A)
* (a(C,x,A) * a(C,x,A)) = 0.
a(x,C,A)
* (a(x,C,A) * a(x,C,A)) = 0.
a(A,C,x)
* (a(A,C,x) * a(A,C,x)) = 0.
a(x,A,C)
* (a(x,A,C) * a(x,A,C)) = 0.
a(A,x,C)
* (a(A,x,C) * a(A,x,C)) = 0.
end_of_list.