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Abstract. FRUTE loops are loops that satisfy the identity (x ·
xy)z = (y · zx)x. We show that locally finite FRUTE loops are
precisely the products O×H, where O is a commutative Moufang
loop in which all elements are of odd order, and H is a 2-group such
that the derived subloop H ′ is of exponent two and H ′ ≤ Z(H).

1. Introduction

A loop is a set with a single binary operation such that in x · y = z,
knowledge of any two of x, y, and z specifies the third uniquely, and
with a unique two-sided identity element, denoted by 1. Two of the
more actively investigated varieties of loops are the (left) Bol loops
and the Moufang loops. Generalizing from the features common to
the Moufang and Bol identities leads to the notion of generalized Bol-
Moufang identity (definitions of terms in this paragraph are given in
Section 2, below). There are 48 varieties of loops of generalized Bol-
Moufang type [2]. The classification of varieties of loops of this type
was initiated by Fenyves [5], [6]. It’s well-known that 3 of these 48 are
nonassociative varieties that consist of loops all of which are Moufang—
the variety of extra loops, the variety of Moufang loops, and the variety
of commutative Moufang loops. An exhaustive search in [2] showed
that there exists precisely one more variety of nonassociative loops
of generalized Bol-Moufang type all of whose members are Moufang
loops: the FRUTE loops. The purpose of this paper is to elucidate the
structure of these loops.

In section 2 we give a brief overview of loops of (generalized) Bol-
Moufang type.

In section 3 we prove some basic facts about FRUTE loops, e.g.,that
they are Moufang. We also offer a characterization of FRUTE loops
via their commutants and nuclei.
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In section 4 we show that FRUTE loops are automorphic loops. We
also derive some basic facts about middle inner mappings and commu-
tator identities, and we show that conjugation is homomorphic.

In section 5 we offer a simple, elegant decomposition of locally finite
FRUTE loops.

In the balance of this section, we fix notation and introduce basic
definitions. We’ve tried to make this paper as self-contained as possible.

Loops admit both a left and a right division, denoted by \ and /,
respectively, satisfying the following four identities [11]: x · (x\y) = y,
(y/x) · x = y, x\(x · y) = y and (y · x)/x = y. In the event that
1/x = x\1, we use the standard notation denoting two-sided inverse:
x−1. Loops are both left and right cancellative.

We usually write xy instead of x · y, and reserve · to have lower
priority than juxtaposition among factors to be multiplied; for instance,
(x · xy)z = (y · zx)x stands for (x · (x · y)) · z = (y · (z · x)) · x.

Moufang loops satisfy the left alternative property (x · xy = x2 · y)
and the right alternative property (y · x2 = yx · x) [11]. Each ele-
ment of a Moufang loop has a (unique) two-sided inverse; and Mo-
ufang loops satisfy the left inverse property (x−1 · xy = y), the right
inverse property (yx · x−1 = y) and the antiautomorphic inverse prop-
erty ((xy)−1 = y−1x−1) [11]. Moufang loops are also diassociative, i.e.,
pairs of elements generate associative subloops [11].

Note that the right inverse property can also be given by u(1/x) =
u/x. Indeed, the choice u = x implies 1/x = x\1 = x−1. Setting
u = yx, thus, gives yx · x−1 = y.

A triple of permutations, α, β, γ on a loop, Q, is called an autotopism
if ∀x, y ∈ Q we have α(x)·β(y) = γ(x·y); note, we follow the convention
of writing functions on the left of their arguments and thus composing
from right to left.

We use the standard notation for the right and left translations:
Ry(x) = Lx(y) = xy. The group of permutations generated by the set
of all right and left translations is called the multiplication group of Q.
The inner mapping group, I(Q), is the subgroup of those permutations
in the multiplication group that fix 1. Set Tx = R−1x Lx; each Tx is an
inner mapping.

A subloop of loop Q is normal if it is invariant as a set under the
action of I(Q) [11]. Automorphic loops are loops all of whose inner
mappings are automorphisms. The variety of commutative Moufang
loops and the variety of groups are two prominent examples of auto-
morphic loops [9]. As we shall see in corollary 4.5, FRUTE loops are
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automorphic Moufang loops. Thus (and obviously), the many struc-
tural results about automorphic Moufang loops (see, for example, [9])
apply also to FRUTE loops.

The left nucleus of a loop Q is given by Nλ(Q) = {a : a · xy =
ax · y,∀x, y ∈ L}. The middle nucleus, Nµ(Q), and the right nucleus,
Nρ(Q), are defined analogously. The nucleus, then, is given by N(Q) =
Nλ(Q) ∩ Nµ(Q) ∩ Nρ(Q). Each of the four nuclei is an associative
subloop of Q for any loop Q [11]; none of these is necessarily normal.
The commutant of Q is given by C(Q) = {c : ∀x ∈ Q, cx = xc}. It
need not be normal, nor even a subloop [10]. If Q is a Moufang loop,
then N(Q) is normal [11], while C(Q) is a subloop [11], but it need not
be normal [7]. But if Q is a FRUTE loop, then it is straightforward to
show that both C(Q) and N(Q) are normal. Finally, the center is the
subloop given by Z(Q) = N(Q) ∩ C(Q); it is a normal subloop for an
arbitrary loop, Q [11].

2. Bol-Moufang identities

In the variety of loops, each of the following four identities implies
the other three: z(xy ·z) = zx·yz, z(x·zy) = (zx·z)y, (z ·xy)z = zx·yz,
and (xz · y)z = x(z · yz). A loop that satisfies any one (hence, all four)
of these identities is called a Moufang loop. A left Bol loop is a loop
satisfying the identity x(y · xz) = (x · yx)z; right Bol loops satisfy the
mirror identity. The left Bol identity generates a different variety of
loops than does the right Bol identity. The intersection of the two Bol
varieties is the variety of Moufang loops [13]. These three varieties are
amongst the most prominent and intensively investigated varieties of
loops; the six equations axiomatizing them share a number of common
features:

(1) they contain only one operation—the loop product,
(2) there are exactly three distinct variables appearing on each side

of the equal sign, one appearing twice on each side of the equal
sign, the other two appearing once each on each side of the
equal sign, and

(3) the order in which the variables appear in is the same on each
side of the equal sign.

An identity that satisfies these three conditions is thus called an
identity of Bol-Moufang type. There are 60 identities of Bol-Moufang
type, and there are precisely 14 varietes of loops axiomatized by a single
identity of Bol-Moufang type [13]. We will refer to these varieties as
varieties of loops of Bol-Moufang type. By nonassociative variety of
loops we mean a variety of loops that is not a subvariety of the variety



4 ALEŠ DRÁPAL AND J. D. PHILLIPS

of groups. Of the 14 varieties of loops of Bol-Moufang type, exactly
2—the variety of Moufang loops, and the variety of extra loops—are
nonassociative varieties that consist of loops all of which are Moufang
[13]. There is a large body of literature about Moufang loops; quite a
bit is also known about the structure of extra loops [8]. Three different
identities of Bol-Moufang type axiomatize the variety of extra loops
[5], [13]; here is one of them: x(y · zx) = (xy · z)x.

By dropping the third condition in the definition of Bol-Moufang
type we obtain the following definition: an identity is said to be of
generalized Bol-Moufang type if it satisfies the following two conditions:

(1) it contains only one operation—the loop product, and
(2) there are exactly three distinct variables appearing on each side

of the equal sign, one appearing twice on each side of the equal
sign, the other two appearing once each on each side of the
equal sign.

There are 1215 identities of generalized Bol-Moufang type, and there
are precisely 48 varieties of loops axiomatized by a single identity
of generalized Bol-Moufang type, including the 14 varieties of Bol-
Moufang type [2]. Of the remaining 34 varieties, six are varieties of
commutative loops, one of which is the variety of all commutative
Moufang loops [2]. Thus, there remains 28 varieties of not necessar-
ily commutative loops of generalized Bol-Moufang type, only three of
which—the three Cheban varieties [12]—have been investigated. Of
the 25 remaining varieties, one is an associative variety (i.e., it consists
of groups) and 6 can each be be described by single, shorter identities;
they are: x·yx = y·xx, xy·x = y·xx, x·xy = y·xx, x·xy = yx·x, xx·y =
x · yx and xx · y = xy · x. Thus, there remain 18 varieties of loops of
Bol-Moufang type that have not yet been investigated. The variety
of FRUTE loops is one of these 18; this variety is axiomatized by the
FRUTE identity : (x·xy)z = (y ·zx)x. It should be noted that the name
“FRUTE” is a nonsensical pseudo-acronym coined in the service of a
prank [2]—Froot Loops®are an iconic American breakfast cereal. But
pranks notwithstanding, this variety of loops has interesting structure,
as we shall see.

Thus, of the 48 generalized Bol-Moufang varieties, exactly four of
them are nonassociative varieties that consist entirely of Moufang loops;
these are (1) the variety of Moufang loops, (2) the variety of extra loops,
(3) the variety of commutative Moufang loops and (4) the variety of
FRUTE loops. As above, there is a rather large body of literature
about the first two varieties. There is also, obviously, a large body
of literature about the commutative Moufang loops; a good place to
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start is [1]. Here, we initiate a study of the fourth variety: the FRUTE
loops.

It’s worth pointing out two things. Firstly, if a variety of loops of
generalized Bol-Moufang type is not a subvariety of the variety of Mo-
ufang loops, and yet it is a subvariety of the variety of left Bol loops
or of the variety of right Bol loops, then it is equal to one of these two
varieties. Secondly, of the remaining 17 varieties of loops of general-
ized Bol-Moufang type that remain to be analyzed, two appear to be
especially structurally interesting: (1) the variety of loops axiomatized
by (x · xy)z = (yz · x)x, and (2) the variety of loops axiomatized by
this identity’s mirror: x(x · zy) = z(yx · x). These might be worthy
candidates for future study.

3. Characterization via commutant and nucleus

Lemma 3.1. Let Q be a FRUTE loop. Then Q is both left and right
alternative. Moreover, Q satisfies the left, right and antiautomorphic
inverse properties. Furthermore, x2y = yx2 for all x, y ∈ Q.

Proof. Setting z = 1 in the FRUTE identity yields x · xy = yx · x, and
setting y = 1 yields x2z = zx · x. Hence, x2y = yx · x = x · xy. Next,
in (x · xy)z = (y · zx)x set z = x; by right cancellation, x · xy = yx2.
Concatenation gives yx2 = x2y, and so yx2 = x · xy = yx · x.

Setting z = 1/x yields yx = (x · xy)(1/x). Hence yx = (yx2)(1/x).
This implies the right inverse property, since yx can be also expressed
as (yx2)/x, by the right alternative property. From

x = (x · xy)(xy)−1 = (y · (xy)−1x)x

it follows that 1 = y · (xy)−1x. Hence y−1 = y\1 = (xy)−1x. Thus,
by the right inverse property, y−1x−1 = (xy)−1. Of course, the right
inverse property and the antiautomorphic inverse property together
imply the left inverse property. �

Corollary 3.2. In the variety of loops, the FRUTE identity is equiv-
alent to its mirror: x(xz · y) = z(yx · x).

Proof. Apply the antiautomorphic inverse property to the FRUTE iden-
tity, and note that each element is an inverse. �

Theorem 3.3. Each FRUTE loop is also a Moufang loop.

Proof. In the FRUTE identity, (x · xy)z = (y · zx)x, set z = z/x to
obtain (x · xy)(z/x) = yz · x. Next, apply the right inverse property
and multiply both sides of this equation on the left by x to obtain
x((x · xy)(zx−1)) = x · (yz · x). Corollary 3.2, together with the right
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inverse property, yields x((x · xy)(zx−1)) = xy · zx; hence x(yz · x) =
xy · zx. �

Theorem 3.4. Let Q be a Moufang loop. The following conditions are
equivalent:

(i) Q is a FRUTE loop;
(ii) x3 ∈ N(Q) and x2 ∈ C(Q) for every x ∈ Q; and
(iii) each Tx, x ∈ Q, is either the identity mapping or an involutory

automorphism on Q.

Proof. Note that Tx
−1 = Tx−1 in each Moufang loop. Now, the identity

(x ·xy)(z/x) = yz ·x is true if and only if each (L2
x, R

−1
x , Rx) is an auto-

topism. This is equivalent to the condition that (LxR
−1
x , R−1x Lx, RxL

−1
x ) =

(Tx, Tx, Tx−1) is an autotopism, since, in a Moufang loop, (L−1x R−1x , Lx, L
−1
x )

is an autotopism for every x ∈ Q [11]. If α, β and γ are permutations
of a loop Q such that α(1) = β(1) = γ(1) = 1 and (α, β, γ) is an
autotopism, then α = β = γ ∈ Aut(Q). Hence (x · xy)z = (y · zx)x
holds if and only if T 2

x = idQ and Tx = Tx−1 ∈ Aut(Q) for all x ∈ Q.
Since LxRx = RxLx, both T 2

x = idQ and Tx = Tx−1 are equivalent to
Lx2 = Rx2 , i.e. x2 ∈ C(Q). Finally, we note that in Moufang loops,
Tx ∈ Aut(Q) if and only if x3 ∈ N(Q) [11].

The referee suggests including an alternate, and “autotopism-free,”
proof. We use the diassocitivity of Q freely in this second proof. In the
FRUTE identity (x·xy)z = (y·zx)x, set y = x−2y to obtain yz = (x−2y·
zx)x. Next, in the Moufang identity x(y · xz) = xyx · z, set y = x−2y
and z = x−1zx to obtain x(x−2y · zx) = x−1yx · x−1zx. It follows from
yz = (x−2y ·zx)x that x·yz ·x−1 = x(x−2y ·zx) = x−1yx·x−1zx. Hence,
the identity x ·yz ·x−1 = x−1yx ·x−1zx characterizes the FRUTE loops
among Moufang loops. Setting y = 1 gives xzx−1 = x−1zx; that is
T 2
x = idQ, and hence, Tx is an involutory automorphism or the identity

map.
�

Let Q be a loop with normal subloops A and B such that Q = AB.
Put C = A ∩ B. For each (a, b) ∈ A × B send ab to aC; this is a
well-defined homomorphism Q → A/C. (Indeed, a1b1 = a2b2 implies
that a1B = a2B. Of course, a1B = a2B ⇔ a1/a2 ∈ C ⇔ a1C = a2C;
i.e., the mapping is well-defined. The rest follows from a1B · a2B =
(a1a2)B).

Thus, ab 7→ (aC, bC) is a well defined homomorphism Q → A/C ×
B/C, the kernel of which is equal to C. This homomorphism is surjec-
tive since a = a · 1 and b = 1 · b, for every (a, b) ∈ A×B.
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Proposition 3.5. Let Q be a FRUTE loop. Then Q/Z(Q) ∼= L × G,
where L is a commutative Moufang loop of exponent 3, and G is a
Boolean group.

Proof. We have x = x−2x3 for each x ∈ Q. Hence Q = C(Q)N(Q).
By definition, Z(Q) = C(Q) ∩ N(Q). If x ∈ C(Q), then x3 ∈ Z(Q)
[11]. Thus, since C(Q) is a commutative Moufang loop, C(Q)/Z(Q)
is a commutative Moufang loop of exponent three. If x ∈ N(Q), then
x2 ∈ Z(Q). Finally, since N(Q) is a group, N(Q)/Z(Q) is a group of
exponent two, i.e., a Boolean group. �

4. Conjugation is homomorphic

Proposition 3.5 suggests a characterization of FRUTE loops via cen-
tral extensions of loops L × G, where L is a commutative Moufang
loop of exponent 3, and G is a Boolean group. However, such an ap-
proach requires a number of opaque technical considerations. We take
a different approach and prove first that x 7→ Tx is a homomorphism
Q→ Aut(Q). There are other settings in loop theory in which a condi-
tion of this kind plays a prominent role [3], [9]; it seems to be indicative
of very strong structural assumptions.

Let Q be a FRUTE loop. Since Q is also a Moufang loop, and hence,
diassociative [11], Tx(y) = xyx−1 for all x, y ∈ Q.

Lemma 4.1. Tx = Tx3, for every x ∈ Q.

Proof. Diassociativity and the fact that x2 ∈ C(Q) together imply that
xyx−1 = x3yx−3. �

Lemma 4.2. TxTy = Tyx, for all x, y ∈ Q.

Proof. If a, b, c ∈ N(Q), then TaTb = Tc is equivalent to Tab = Tc, and
to the condition that (ab)−1c ∈ C(Q). Since TxTy = Tx3Ty3 and Tyx =
T(yx)3 , by Lemma 4.1, it suffices to prove that y−3x−3(yx)3 ∈ C(Q).
And this follows from applying Theorem 3.4 to:

y−3x−3(yx)2(yx) = (yx)2y−1x−1y−1x−1 = (yx)2(xy)−2.

�

Theorem 4.3. Let Q be a FRUTE loop. Then the mapping T : Q →
Aut(Q), x 7→ Tx, is a loop homomorphism with kernel equal to C(Q).
Furthermore, Q/C(Q) is a Boolean group, and C(Q) is a commutative
Moufang loop.

Proof. By Theorem 3.4, each Tx is an automorphism of Q that is of
order at most two. By Lemma 4.2 all these automorphisms form a
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subgroup of Aut(Q). This subgroup is Boolean. Therefore TxTy =
TyTx = Txy. The rest is clear. �

We define the commutator, [x, y] of x and y, thusly: xy = yx · [x, y].
The least normal subloop of Q that contains all commutators is known
as the derived subloop and is denoted by Q′. By Theorem 4.3, Q′ ≤
C(Q).

Theorem 4.4. Let Q be a FRUTE loop. Then Q′ is a Boolean group
and is contained in Z(Q). If x, y, z ∈ Q, then [x, y] = [y, x] =
(xy)2x−2y−2 and [x, yz] = [x, y][x, z].

Proof. First note that [x, y] ∈ C(Q) by Theorem 4.3. Next, we have
x3 ∈ N(Q) by Theorem 3.4, and so [x3, y] = x−3T−1y (x3) ∈ N(Q)

since N(Q) is normal in Q. Thus, since x2 ∈ C(Q) by 3.4, we have
[x, y] = [x3, y], and hence, [x, y] ∈ Z(Q).

In any Moufang loop, we have [a, yz] = [a, z](z−1[a, y]z) if a is nu-
clear. This is because 〈a, y, z〉 is a group, by Moufang’s theorem [4].
Thus, if commutants are in the commutator, as they are in FRUTE
loops, we have [a, yz] = [a, y][a, z]. Now, recalling that x3 is nuclear, we
obtain [x, yz] = [x3, yz] = [x3, y][x3, z] = [x, y][x, z]. And this in turn
gives[x, y]2 = [x, y2] = 1, since y2 ∈ C(Q). Hence [y, x] = [x, y]−1 =
[x, y] for all x, y ∈ Q. Finally, since Q is diassociative, and since x2, y2 ∈
C(Q), we have (xy)2x−2y−2 = x−2xyy−2xy = x−1y−1xy = [x, y], again,
for all x, y ∈ Q. �

Corollary 4.5. Let Q be a FRUTE loop. Then Q is an automorphic
Moufang loop.

Proof. The standard inner mappings are pseudoautomorphisms, the
companions of which are nuclear. Thus, the inner mappings are auto-
morphisms [1]. �

5. Locally finiteness takes a coproduct face

By a p-group we mean a group in which each element is of an order
pk for some k ≥ 0.

Each locally finite commutative Moufang loop is a coproduct (i.e. a
direct sum) of abelian p-groups, p 6= 3, and of a commutative Moufang
3-loop, i.e. a commutative Moufang loop in which all elements are of
order a power of 3 [1].

Lemma 5.1. Let G be a locally finite group such that x2 ∈ Z(G) for
for each x ∈ G. Then G = O × H, where O is an abelian group
in which all elements are of odd order, and H is a 2-group such that
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H ′ is of exponent two and H ′ ≤ Z(H). Conversely, every such group
G = O ×H satisfies the condition that x2 ∈ Z(G) for each x ∈ G.

Proof. Indeed, every element of odd order is central. Hence, all ele-
ments of odd order form a central normal subgroup. Now, [x, y] =
(xy)2x−2y−2 implies that [x, y] = [y, x] is central. Hence [x, yz] =
[x, y][x, z] for all x, y, z ∈ G, and, in particular 1 = [x, y2] = [x, y]2.
Hence G′ is a central Boolean group, and H may be defined as a preim-
age of the 2-group in the decomposition of G/G′. For the converse
direction first note that O ≤ Z(G) and that G′ = H ′ ≤ Z(G). Since
[x, yz] = [x, yz] = [x, y][x, z] for all x, y, z ∈ G, and since [x, y] is of
order at most two, [x, y2] = 1 for all x, y ∈ G. Thus y2 ∈ Z(G) for
every y ∈ G. �

Theorem 5.2. Let Q be a locally finite FRUTE loop. Then Q = O×H,
where O is a commutative Moufang loop in which all elements are of
odd order, and H is a 2-group such that H ′ is of exponent two and
H ′ ≤ Z(H). On the other hand every such loop Q = O × H is a
FRUTE loop.

Proof. Put Q̄ = Q/Q′ and denote by π the projection Q → Q̄. By
Theorem 3.4 and Lemma 5.1, Q̄ = Ō × H̄, where H̄ is a 2-group, and
Ō consists of all odd order elements of Q̄. Put H = π−1(H̄). All
elements of H are of order that is a power of two. By Theorem 3.4,
H is a group, or—more precisely—a 2-group. The group satisfies the
law x2yz = yzx2. Hence H ′ ≤ Z(H), by Lemma 5.1. By Theorem 4.4,
Q′ ≤ Z(Q). All elements of π−1(Ō) thus belong to C(Q). Indeed, if
x ∈ Q is expressed as yz, where y, z ∈< x >, |y| is odd and |z| is a power
of two, then π(x) ∈ Ō if and only if z ∈ Q′ ≤ Z(Q). Therefore Q′ = H ′,
again by Theorem 4.4. Now, π−1(Ō) is a commutative Moufang loop.
Hence it can be expressed as O×H ′, where O consists of all odd order
elements that are contained in Q [1]. On the other hand, H consists
of all elements in Q the order of which is a power of two. Clearly,
O ∩ H = O ∩ π−1(Ō) ∩ H = O ∩ H ′ = 1. Both O and H are normal
since each inner mapping is an automorphism, by Corollary 4.5.

The converse is trivial since both commutative Moufang loops and
groups with central squares satisfy the FRUTE identity. �

Thus, by Theorem 5.2, we see that the minimal order for a non-
commutative FRUTE loop is 8 = 23, while the minimal order for a
nonassociative FRUTE loop is 81 = 34.
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