assign(order, kbo).
formulas(assumptions).
% identity element
1 * x = x.
x * 1 = x.
% quasigroup
x * (x \ y) = y.
x \ (x * y) = y.
(x * y) / y = x.
(x / y) * y = x.
% flexible, alternative
x * (y * x) = (x * y) * x.
x * (x * y) = (x * x) * y.
(y * x) * x = y * (x * x).
% A is an (A) element
% A2
A * ((x * y) * A) = (A * x) * (y * A).
% A1x
z * ((A * y) * z) = (z * A) * (y * z).
% A1y
z * ((x * A) * z) = (z * x) * (A * z).
% consequences
% B2
(A * (x * y)) * A = (A * x) * (y * A).
end_of_list.
formulas(goals).
% B1x
(z * (A * y)) * z = (z * A) * (y * z).
end_of_list.
assign(order, kbo).
formulas(assumptions).
% identity element
1 * x = x.
x * 1 = x.
% quasigroup
x * (x \ y) = y.
x \ (x * y) = y.
(x * y) / y = x.
(x / y) * y = x.
% flexible, alternative
x * (y * x) = (x * y) * x.
x * (x * y) = (x * x) * y.
(y * x) * x = y * (x * x).
% A is an (A) element
% A2
A * ((x * y) * A) = (A * x) * (y * A).
% A1x
z * ((A * y) * z) = (z * A) * (y * z).
% A1y
z * ((x * A) * z) = (z * x) * (A * z).
% consequences
% B2
(A * (x * y)) * A = (A * x) * (y * A).
% B1x
(z * (A * y)) * z = (z * A) * (y * z).
end_of_list.
formulas(goals).
% B1y
(z * (x * A)) * z = (z * x) * (A * z).
end_of_list.
assign(order, kbo).
formulas(assumptions).
% identity element
1 * x = x.
x * 1 = x.
% quasigroup
x * (x \ y) = y.
x \ (x * y) = y.
(x * y) / y = x.
(x / y) * y = x.
% flexible, alternative
x * (y * x) = (x * y) * x.
x * (x * y) = (x * x) * y.
(y * x) * x = y * (x * x).
% A is an (A) element
% A2
A * ((x * y) * A) = (A * x) * (y * A).
% A1x
z * ((A * y) * z) = (z * A) * (y * z).
% A1y
z * ((x * A) * z) = (z * x) * (A * z).
% consequences
% B2
(A * (x * y)) * A = (A * x) * (y * A).
% B1x
(z * (A * y)) * z = (z * A) * (y * z).
% B1y
(z * (x * A)) * z = (z * x) * (A * z).
end_of_list.
formulas(goals).
% C1x
z * (A * (z * y)) = ((z * A) * z) * y.
end_of_list.
assign(order, kbo).
formulas(assumptions).
% identity element
1 * x = x.
x * 1 = x.
% quasigroup
x * (x \ y) = y.
x \ (x * y) = y.
(x * y) / y = x.
(x / y) * y = x.
% flexible, alternative
x * (y * x) = (x * y) * x.
x * (x * y) = (x * x) * y.
(y * x) * x = y * (x * x).
% A is an (A) element
% A2
A * ((x * y) * A) = (A * x) * (y * A).
% A1x
z * ((A * y) * z) = (z * A) * (y * z).
% A1y
z * ((x * A) * z) = (z * x) * (A * z).
% consequences
% B2
(A * (x * y)) * A = (A * x) * (y * A).
% B1x
(z * (A * y)) * z = (z * A) * (y * z).
% B1y
(z * (x * A)) * z = (z * x) * (A * z).
% C1x
z * (A * (z * y)) = ((z * A) * z) * y.
end_of_list.
formulas(goals).
% D1y
((x * z) * A) * z = x * (z * (A * z)).
end_of_list.
assign(order, kbo).
formulas(assumptions).
% identity element
1 * x = x.
x * 1 = x.
% quasigroup
x * (x \ y) = y.
x \ (x * y) = y.
(x * y) / y = x.
(x / y) * y = x.
% flexible, alternative
x * (y * x) = (x * y) * x.
x * (x * y) = (x * x) * y.
(y * x) * x = y * (x * x).
% A is an (A) element
% A2
A * ((x * y) * A) = (A * x) * (y * A).
% A1x
z * ((A * y) * z) = (z * A) * (y * z).
% A1y
z * ((x * A) * z) = (z * x) * (A * z).
% consequences
% B2
(A * (x * y)) * A = (A * x) * (y * A).
% B1x
(z * (A * y)) * z = (z * A) * (y * z).
% B1y
(z * (x * A)) * z = (z * x) * (A * z).
% C1x
z * (A * (z * y)) = ((z * A) * z) * y.
% D1y
((x * z) * A) * z = x * (z * (A * z)).
end_of_list.
formulas(goals).
% C2
A * (x * (A * y)) = ((A * x) * A) * y.
end_of_list.
assign(order, kbo).
formulas(assumptions).
% identity element
1 * x = x.
x * 1 = x.
% quasigroup
x * (x \ y) = y.
x \ (x * y) = y.
(x * y) / y = x.
(x / y) * y = x.
% flexible, alternative
x * (y * x) = (x * y) * x.
x * (x * y) = (x * x) * y.
(y * x) * x = y * (x * x).
% A is an (A) element
% A2
A * ((x * y) * A) = (A * x) * (y * A).
% A1x
z * ((A * y) * z) = (z * A) * (y * z).
% A1y
z * ((x * A) * z) = (z * x) * (A * z).
% consequences
% B2
(A * (x * y)) * A = (A * x) * (y * A).
% B1x
(z * (A * y)) * z = (z * A) * (y * z).
% B1y
(z * (x * A)) * z = (z * x) * (A * z).
% C1x
z * (A * (z * y)) = ((z * A) * z) * y.
% D1y
((x * z) * A) * z = x * (z * (A * z)).
% C2
A * (x * (A * y)) = ((A * x) * A) * y.
end_of_list.
formulas(goals).
%
D2
((x
* A) * y) * A = x * (A * (y * A)).
end_of_list.
assign(order, kbo).
formulas(assumptions).
% identity element
1 * x = x.
x * 1 = x.
% quasigroup
x * (x \ y) = y.
x \ (x * y) = y.
(x * y) / y = x.
(x / y) * y = x.
% flexible, alternative
x * (y * x) = (x * y) * x.
x * (x * y) = (x * x) * y.
(y * x) * x = y * (x * x).
% A is an (A) element
% A2
A * ((x * y) * A) = (A * x) * (y * A).
% A1x
z * ((A * y) * z) = (z * A) * (y * z).
% A1y
z * ((x * A) * z) = (z * x) * (A * z).
% consequences
% B2
(A * (x * y)) * A = (A * x) * (y * A).
% B1x
(z * (A * y)) * z = (z * A) * (y * z).
% B1y
(z * (x * A)) * z = (z * x) * (A * z).
% C1x
z * (A * (z * y)) = ((z * A) * z) * y.
% D1y
((x * z) * A) * z = x * (z * (A * z)).
% C2
A * (x * (A * y)) = ((A * x) * A) * y.
%
D2
((x
* A) * y) * A = x * (A * (y * A)).
end_of_list.
formulas(goals).
%
C1y
z
* (x * (z * A)) = ((z * x) * z) * A.
end_of_list.
assign(order, kbo).
formulas(assumptions).
% identity element
1 * x = x.
x * 1 = x.
% quasigroup
x * (x \ y) = y.
x \ (x * y) = y.
(x * y) / y = x.
(x / y) * y = x.
% flexible, alternative
x * (y * x) = (x * y) * x.
x * (x * y) = (x * x) * y.
(y * x) * x = y * (x * x).
% A is an (A) element
% A2
A * ((x * y) * A) = (A * x) * (y * A).
% A1x
z * ((A * y) * z) = (z * A) * (y * z).
% A1y
z * ((x * A) * z) = (z * x) * (A * z).
% consequences
% B2
(A * (x * y)) * A = (A * x) * (y * A).
% B1x
(z * (A * y)) * z = (z * A) * (y * z).
% B1y
(z * (x * A)) * z = (z * x) * (A * z).
% C1x
z * (A * (z * y)) = ((z * A) * z) * y.
% D1y
((x * z) * A) * z = x * (z * (A * z)).
% C2
A * (x * (A * y)) = ((A * x) * A) * y.
%
D2
((x
* A) * y) * A = x * (A * (y * A)).
%
C1y
z
* (x * (z * A)) = ((z * x) * z) * A.
end_of_list.
formulas(goals).
%
D1x
((A
* z) * y) * z = A * (z * (y * z)).
end_of_list.