assign(order, kbo).

 

formulas(assumptions).

 

% identity element

1 * x = x.

x * 1 = x.

 

% quasigroup

x * (x \ y) = y.

x \ (x * y) = y.

(x * y) / y = x.

(x / y) * y = x.

 

% inverse property

x' * x = 1.

x * x' = 1.

x' * (x * y) = y.

(y * x) * x' = y.

(x * y)' = y' * x'.

 

% T(A) is an automorphism

A' * ((u * v) * A) = (A' * (u * A)) * (A' * (v * A)).

 

% R(A,x) is an automorphism

(((u * v) * A) * y) * (A * y)' = (((u * A) * y) * (A * y)') * (((v * A) * y) * (A * y)').

 

end_of_list.

 

formulas(goals).

 

% R(x,A) is an automorphism

(((u * v) * x) * A) * (x * A)' = (((u * x) * A) * (x * A)') * (((v * x) * A) * (x * A)').

 

end_of_list.

 

 

assign(order, kbo).

 

formulas(assumptions).

 

% identity element

1 * x = x.

x * 1 = x.

 

% quasigroup

x * (x \ y) = y.

x \ (x * y) = y.

(x * y) / y = x.

(x / y) * y = x.

 

% inverse property

x' * x = 1.

x * x' = 1.

x' * (x * y) = y.

(y * x) * x' = y.

(x * y)' = y' * x'.

 

% T(A) is an automorphism

A' * ((u * v) * A) = (A' * (u * A)) * (A' * (v * A)).

 

% R(A,x) is an automorphism

(((u * v) * A) * y) * (A * y)' = (((u * A) * y) * (A * y)') * (((v * A) * y) * (A * y)').

% R(x,A) is an automorphism

(((u * v) * x) * A) * (x * A)' = (((u * x) * A) * (x * A)') * (((v * x) * A) * (x * A)').

 

end_of_list.

 

formulas(goals).

 

% L(A,x) is an automorphism

(y * A)' * (y * (A * (u * v))) = ((y * A)' * (y * (A * u))) * ((y * A)' * (y * (A * v))).

 

end_of_list.

 

 

 

 

assign(order, kbo).

 

formulas(assumptions).

 

% identity element

1 * x = x.

x * 1 = x.

 

% quasigroup

x * (x \ y) = y.

x \ (x * y) = y.

(x * y) / y = x.

(x / y) * y = x.

 

% inverse property

x' * x = 1.

x * x' = 1.

x' * (x * y) = y.

(y * x) * x' = y.

(x * y)' = y' * x'.

 

% T(A) is an automorphism

A' * ((u * v) * A) = (A' * (u * A)) * (A' * (v * A)).

 

% R(x,A) is an automorphism

(((u * v) * x) * A) * (x * A)' = (((u * x) * A) * (x * A)') * (((v * x) * A) * (x * A)').

 

end_of_list.

 

formulas(goals).

 

% R(A,x) is an automorphism

(((u * v) * A) * y) * (A * y)' = (((u * A) * y) * (A * y)') * (((v * A) * y) * (A * y)').

 

end_of_list.

 

 

assign(order, kbo).

 

formulas(assumptions).

 

% identity element

1 * x = x.

x * 1 = x.

 

% quasigroup

x * (x \ y) = y.

x \ (x * y) = y.

(x * y) / y = x.

(x / y) * y = x.

 

% inverse property

x' * x = 1.

x * x' = 1.

x' * (x * y) = y.

(y * x) * x' = y.

(x * y)' = y' * x'.

 

% T(A) is an automorphism

A' * ((u * v) * A) = (A' * (u * A)) * (A' * (v * A)).

 

% L(A,x) is an automorphism

(y * A)' * (y * (A * (u * v))) = ((y * A)' * (y * (A * u))) * ((y * A)' * (y * (A * v))).

 

end_of_list.

 

formulas(goals).

 

% L(x,A) is an automorphism

(A * x)' * (A * (x * (u * v))) = ((A * x)' * (A * (x * u))) * ((A * x)' * (A * (x * v))).

 

end_of_list.

 

 

assign(order, kbo).

 

formulas(assumptions).

 

% identity element

1 * x = x.

x * 1 = x.

 

% quasigroup

x * (x \ y) = y.

x \ (x * y) = y.

(x * y) / y = x.

(x / y) * y = x.

 

% inverse property

x' * x = 1.

x * x' = 1.

x' * (x * y) = y.

(y * x) * x' = y.

(x * y)' = y' * x'.

 

% T(A) is an automorphism

A' * ((u * v) * A) = (A' * (u * A)) * (A' * (v * A)).

 

% L(A,x) is an automorphism

(y * A)' * (y * (A * (u * v))) = ((y * A)' * (y * (A * u))) * ((y * A)' * (y * (A * v))).

% L(x,A) is an automorphism

(A * x)' * (A * (x * (u * v))) = ((A * x)' * (A * (x * u))) * ((A * x)' * (A * (x * v))).

 

end_of_list.

 

formulas(goals).

 

% R(A,x) is an automorphism

(((u * v) * A) * y) * (A * y)' = (((u * A) * y) * (A * y)') * (((v * A) * y) * (A * y)').

 

end_of_list.

 

 

 

 

assign(order, kbo).

 

formulas(assumptions).

 

% identity element

1 * x = x.

x * 1 = x.

 

% quasigroup

x * (x \ y) = y.

x \ (x * y) = y.

(x * y) / y = x.

(x / y) * y = x.

 

% inverse property

x' * x = 1.

x * x' = 1.

x' * (x * y) = y.

(y * x) * x' = y.

(x * y)' = y' * x'.

 

% T(A) is an automorphism

A' * ((u * v) * A) = (A' * (u * A)) * (A' * (v * A)).

 

% L(x,A) is an automorphism

(A * x)' * (A * (x * (u * v))) = ((A * x)' * (A * (x * u))) * ((A * x)' * (A * (x * v))).

 

end_of_list.

 

formulas(goals).

 

% L(A,x) is an automorphism

(y * A)' * (y * (A * (u * v))) = ((y * A)' * (y * (A * u))) * ((y * A)' * (y * (A * v))).

 

end_of_list.