assign(order, kbo).
formulas(assumptions).
%
divisible groupoid
(x / y) * y = x.
x
* (x \ y) = y.
%
A2
z
* ((x * y) * z) = (z * x) * (y * z).
end_of_list.
formulas(goals).
(x * y) / y = x.
end_of_list.
assign(order, kbo).
formulas(assumptions).
%
divisible groupoid
(x / y) * y = x.
x
* (x \ y) = y.
%
A2
z
* ((x * y) * z) = (z * x) * (y * z).
end_of_list.
formulas(goals).
x
\ (x * y) = y.
end_of_list.
assign(order, kbo).
formulas(assumptions).
%
divisible groupoid
(x / y) * y = x.
x
* (x \ y) = y.
%
C2
z
* (x * (z * y)) = ((z * x) * z) * y.
end_of_list.
formulas(goals).
(x * y) / y = x.
end_of_list.
assign(order, kbo).
formulas(assumptions).
%
divisible groupoid
(x / y) * y = x.
x
* (x \ y) = y.
%
C2
z
* (x * (z * y)) = ((z * x) * z) * y.
end_of_list.
formulas(goals).
x
\ (x * y) = y.
end_of_list.
The proofs for (B) are dual to the proofs for (A), and
the proofs for (D) are dual to the proofs for (C). Thus, we have shown that
divisible groupoids satisfying any one of (A), (B),
(C), or (D) are, in fact, quasigroups. Thus, by KunenŐs result, they are Moufang
loops.