assign(order,
kbo).
formulas(assumptions).
%
L(A) bijects
A *
(A \ y) = y.
A \
(A * y) = y.
%
R(A) one-to-one
(x
* A) / A = x.
%
A is an (A) element
%
A2
A
* ((x * y) * A) = (A * x) * (y * A).
%
A1x
z
* ((A * y) * z) = (z * A) * (y * z).
%
A1y
z
* ((x * A) * z) = (z * x) * (A * z).
end_of_list.
formulas(goals).
%
A / A is a left identity element
(A
/ A) * x = x.
end_of_list.
assign(order,
kbo).
formulas(assumptions).
%
L(A) bijects
A *
(A \ y) = y.
A \
(A * y) = y.
%
R(A) one-to-one
(x
* A) / A = x.
%
A is an (A) element
%
A2
A
* ((x * y) * A) = (A * x) * (y * A).
%
A1x
z
* ((A * y) * z) = (z * A) * (y * z).
%
A1y
z
* ((x * A) * z) = (z * x) * (A * z).
end_of_list.
formulas(goals).
%
A / A is a right identity element
x
* (A / A) = x.
end_of_list.
assign(order,
kbo).
formulas(assumptions).
%
L(A) bijects
A *
(A \ y) = y.
A \
(A * y) = y.
%
R(A) onto
(x
/ A) * A = x.
%
A is an (A) element
%
A2
A
* ((x * y) * A) = (A * x) * (y * A).
%
A1x
z
* ((A * y) * z) = (z * A) * (y * z).
%
A1y
z
* ((x * A) * z) = (z * x) * (A * z).
end_of_list.
formulas(goals).
%
A / A is a left identity element
(A / A) * x = x.
end_of_list.
assign(order,
kbo).
formulas(assumptions).
%
L(A) bijects
A *
(A \ y) = y.
A \
(A * y) = y.
%
R(A) onto
(x
/ A) * A = x.
%
A is an (A) element
%
A2
A
* ((x * y) * A) = (A * x) * (y * A).
%
A1x
z
* ((A * y) * z) = (z * A) * (y * z).
%
A1y
z
* ((x * A) * z) = (z * x) * (A * z).
end_of_list.
formulas(goals).
%
A / A is a left identity element
x
* (A / A) = x.
end_of_list.
assign(order,
kbo).
formulas(assumptions).
%
L(A) onto
A *
(A \ y) = y.
%
R(A) onto
(x
/ A) * A = x.
% A
is left alternative element
A *
(A * x) = (A * A) * x.
%
A is an (C) element
%
C2
A
* (x * (A * y)) = ((A * x) * A) * y.
%
C1x
z
* (A * (z * y)) = ((z * A) * z) * y.
%
C1y
z
* (x * (z * A)) = ((z * x) * z) * A.
end_of_list.
formulas(goals).
%
A / A is a left identity element
x
* (A / A) = x.
end_of_list.
assign(order,
kbo).
formulas(assumptions).
%
L(A) onto
A *
(A \ y) = y.
%
R(A) onto
(x
/ A) * A = x.
% A
is left alternative element
A *
(A * x) = (A * A) * x.
%
A is an (C) element
%
C2
A
* (x * (A * y)) = ((A * x) * A) * y.
%
C1x
z
* (A * (z * y)) = ((z * A) * z) * y.
%
C1y
z
* (x * (z * A)) = ((z * x) * z) * A.
end_of_list.
formulas(goals).
%
A / A is a left identity element
(A
/ A) * x = x.
end_of_list.