assign(order,
kbo).
formulas(assumptions).
% quasigroup
x *
(x \ y) = y.
x \
(x * y) = y.
(x
* y) / y = x.
(x
/ y) * y = x.
% A2
A * ((x * y) * A) = (A * x) * (y * A).
% C2
A * (x * (A * y)) = ((A * x) * A) * y.
end_of_list.
formulas(goals).
% A / A is a two-sided
identity element
(A / A) * x = x.
x *
(A / A) = x.
end_of_list.
assign(order,
kbo).
formulas(assumptions).
% quasigroup
x *
(x \ y) = y.
x \
(x * y) = y.
(x
* y) / y = x.
(x
/ y) * y = x.
% A2
A * ((x * y) * A) = (A * x) * (y * A).
% D2
((x * A) * y) * A = x
* (A * (y * A)).
end_of_list.
formulas(goals).
% A / A is a two-sided
identity element
(A / A) * x = x.
x *
(A / A) = x.
end_of_list.
assign(order,
kbo).
formulas(assumptions).
% quasigroup
x *
(x \ y) = y.
x \
(x * y) = y.
(x
* y) / y = x.
(x
/ y) * y = x.
% C2
A * (x * (A * y)) = ((A * x) * A) * y.
% D2
((x * A) * y) * A = x
* (A * (y * A)).
end_of_list.
formulas(goals).
% A / A is a two-sided
identity element
(A / A) * x = x.
x *
(A / A) = x.
end_of_list.