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Research Statement

I am interested in geometry and topology, particularly through visualization, computation
and application. In my Ph.D. dissertation, I studied a hybrid of hyperbolic and Euclidean
geometry and its relation to topological surfaces. This study of complex projective struc-

tures draws upon ideas from many areas of mathematics including geometry, topology,
complex analysis, group theory, and moduli theory. My postdoctoral work is in the area
of geometric and topological data analysis, and is an attempt to import recent ideas from
geometry and topology to aid in pattern classification problems such as facial recogni-
tion, human action and gesture classification and anomaly detection. I am particularly
interested in the variation of geometric structures on a topological manifold, discovery
of geometric structure in massive data sets, and computation and optimization of such
structures for the purpose of visualization and information extraction.

Geometry and Topology. Topology refers to the properties of an object that are pre-
served through bending, stretching or twisting. For example, a sock and a cowboy hat
have the same topology because they both can be flattened out onto a plane without tear-
ing or folding either one. This is great for packing a suitcase! Topology is associated to
very basic properties, and is typically used to distinguish objects at a fundamental level.
Geometry is more rigid, since it refers to the properties of an object that are preserved
by a group of transformations of the object. Parameter spaces of geometric structures on
a topological space provide an interesting way to quantify the relationships which exist
between these two ideas. For a given topological object X, a point in such a parameter
space represents a geometric structure on X. A path in the parameter space represents
a process that continuously deforms one geometric structure on X into another. The co-
ordinates of the space are called parameters since they measure the degree to which one
can deform the geometry without perturbing the underlying topology. Next, we consider
the parameter space of complex projective structures.
Let G(S, ρ) be a graph whose vertices are complex projective structures with holonomy

ρ and whose edges are graftings from one vertex to another. If ρ is quasi-Fuchsian, a
theorem of Goldman [4] implies that G(S, ρ) is connected. If ρ(π1(S)) is a Schottky
group, Baba [1] has shown that G(S, ρ) is connected. We show in [9] that if ρ(π1(S))
is a Schottky group, then π1(G(S, ρ)) is not finitely generated and there are an infinite
number of (standard) projective structures which can be grafted to a common structure.
A recent preprint of Baba implies that in the Schottky case, G(S, ρ) is connected. This,
plus our connectivity result suggests a rich calculus of grafting in this Schottky case
and our computational methods provide a starting point for this new area of research.
Furthermore, Kapovich [5] has generalized Goldman’s result to all higher dimensions, and
a generalization of this to the Schottky case remains open. The idea of our main theorem
which implies these connectivity results is suggest in the figure below.
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Figure 1. Grafting S along a left-spiraling curve γ, the developed image
and the Hopf torus.

Future Projects. The construction of computer based models for elementary parameter
spaces forms a class of interesting mathematics/computer science interdisciplinary re-
search projects. For example, the machine learning community has recently begun to use
parameter spaces to classify patterns in data [7]. Little is known, however, concerning
how different choices of metric on the underlying parameter space affect classification
rates. A rigorous comparison of such metrics would provide mathematical justification
for the use of parameter spaces in this context. Additionally, visualization and computa-
tion of geometric structures is an active area of research [11]. Our theoretical results can
be implemented to produce computer aided computation and visualization of complex
projective structures. Specifically, the process of grafting can be seen as an animation
whose frames capture the effect of attaching Euclidean tubes of varying widths to the
hyperbolic structure. Students who have knowledge of graph theory, abstract algebra or
topology could begin research in this area immediately. Another related project would
use Teichmüller theory to classify digital images, extending the work of [3].

Recent results [1], [8] concerning the parameter space of complex projective structures
show that these geometric structures can be described in very simple topological terms.
These results also provide simple combinatorial tools that make navigation in this space
a problem appropriate for undergraduate students. The computation of paths and loops
in this space would provide geometric information, and could be approached from several
directions such as graph theory and combinatorics. Visualization of these structures is
important to understanding them, and computer generated models can be developed
in terms of their newfound topological simplicity. A long term goal is to use complex
projective structures to aid in pattern classification problems as in [3] and this program
of visualization and computation would be a first step in this direction.

Geometric Pattern Analysis. A pattern or data point, can be defined very gener-
ally and can refer to a shape, digital image, video or song. For example, pixels can be
thought of in terms of matrices and there is a wealth of good problems dealing with
linear algebra of digital images. High-resolution data is inherently high-dimensional, so
matrix factorization techniques which produce low-rank approximations are used to gen-
erate low-dimensional embeddings of the data which simultaneously reduce complexity
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and preserve important features. These techniques play key roles in the solution to many
challenging classification problems such as voice, facial and action recognition as well as
anomaly detection [10].

A modern perspective posits that most patterns are generally driven by a few non-linear
parameters, creating a need for non-linear techniques such as manifold learning, which
rely heavily on geometry and topology. Given a set of images, one wishes to define
a parameter space for the set whose geometry and/or topology accurately depicts the
interrelationships of the images. If this can be done, the geometric structure of the
parameter space can be used to classify the images. For example, a set of k · n, p-pixel
images of n people taken under k different illumination conditions can be mapped to
n points on a Grassmann manifold of dimension k(p − k) and the manifold’s chordal
distance can be used to accurately distinguish the n people [2]. Given an arbitrary data
set, the search for a space which parameterizes subsets of high correlation is an exciting
and challenging problem involving several different areas of study.

Future Projects. I have several related projects in mind that are appropriate for under-
graduate and graduate research in this area. These projects are easy to define and seem
approachable to intellectually flexible students with a modest background consisting of
elementary calculus and linear algebra. These range in mathematical direction as well as
in depth, and I will briefly describe a few below. Students will learn to see digital audio
and video as a playground for mathematical ideas such as geometry, topology, linear al-
gebra and calculus.

Complex projective structures are natural tools for data analysis since they are geometric
structures on subsets of parameter spaces that are invariant under a group action. I hope
to convert theorems of complex projective structures into practical algorithms and im-
plement them for pattern analysis applications. These structures share many similarities
to hyperbolic and conformal structures, which have recently been used in applications
including medical imaging and shape analysis [3].

A video clip can naturally be thought of as a data cube where x and y represent pixel val-
ues and t represents time. To play the video, we typically display successive (x, y) slices of
the video in succession. It is possible, however, to instead display successive (x, t) or (t, y)
slices in succession, essentially creating another video from the same data. By focusing
on the set of frames, each slice determines a subspace of Rn, by taking the span of the set.
Then a video naturally determines a point on several Grassmannian manifolds. We have
shown [9] that algorithms on such manifolds can perform better than the same algorithm
in the classical setting of vector spaces, and other algorithms are likely to benefit from
such a generalization.

Another set of projects involves the parameter space of musical chords. It has been
shown that the parameter space of musical chords is 3-dimensional and has a nice geo-
metric and topological structure. One interesting project would be to create an interactive
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Figure 2. The Grassmannian as a parameter space for the set of digital videos.

3-dimensional model of the parameter space in which one could hear different points of
the parameter space. Another project is to model a set of songs in the parameter space,
and see if similarity in the parameter space coincides with human perceptions of similarity.

Conclusion. Parameter spaces of geometric structures have long been of intrinsic theo-
retical interest. Their recent emergence as a tool for solving interdisciplinary classification
problems [9], [7] has made them valuable in the applied setting as well. Visualization,
computation and optimization in such spaces are concrete tools through which geometry,
topology and parameter spaces are applied to solve classification problems.
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