Name:
Exam 2 Study Guide :: Math 111 :: Fall 2014

1. Let $P=(-1,4)$ and $Q=(6,-3)$ be two points in the coordinate plane.
(a) Plot P and Q on the coordinate plane.
(b) Find the distance between P and Q.
(c) Find the midpoint of the seqment $P Q$.
[2.5, .5]
\qquad
-1

$$
y=x-2
$$

\qquad
(e) Find the perpendicular bisector of the line containing P and Q.
(f) Find an equation for the circle for which the segment $P Q$ is a diameter.

$$
(x-2.5)^{\wedge} 2+(y-.5)^{\wedge} 2=4.9 t
$$

2. Find the center and radius of the circle given by the equation below. \qquad $x^{2}+8 x+y^{2}-6 x-9=0$
$x^{\wedge} 2+2 x+1+y^{\wedge} 2=10$
$(x+1)^{\wedge}+y^{\wedge} 2=10$

$$
\begin{aligned}
& \text { center }=(-1,0) \\
& \text { radius }=\text { sqrt(10) }
\end{aligned}
$$

3. Let L be the line given by $8 x-4 y=24$.
(a) Find the x - and y-intercepts of the graph of this line.

$$
x=3, y=-6
$$

(c) Write the equation of the line in slope-interceptlorm.-
(d) What is the slope of the line?

2
(e) What is the equal the line parallel to L that passes through the origin?

$$
y=2 x
$$

(f) What is the of the line perpendicular to L that passes through the origin?
(a) x-int: set $y=0$ s $8 x-4(0)=24 \Rightarrow x=3$
y int: set $x=0 \Rightarrow-4 y=2+y=-6$
4. Find an equation of a line with x-intercept π and y-intercept $\sqrt{2}$.

$$
\left.y=\left(-\frac{\sqrt{2}}{\pi}\right) x+\sqrt{2}\right]
$$

$$
\begin{gathered}
y=\sqrt{2}+\pi y-\pi \sqrt{2} \\
-\pi 4 \\
-\pi y \\
y(1-\pi)=y-\pi y=\sqrt{2} x-\pi \sqrt{2} \\
y=\frac{\sqrt{2}}{1-\pi} \left\lvert\, x-\left(\frac{\pi \sqrt{2}}{1-\pi}\right)\left\{\begin{array}{l}
\Rightarrow \sqrt{2}=b \\
\sqrt{2}=\frac{-\sqrt{2}}{\pi} 0+b
\end{array}\right.\right.
\end{gathered}
$$

Slope: $m=\frac{\text { rise }}{\text { run }}=\frac{\sqrt{2}-\infty}{0-\pi}=\frac{\sqrt{2}}{-\pi}$
point: $(0, \sqrt{2})$ is a point on L, so it satisfies $y=\frac{-\sqrt{2}}{\pi} x+\frac{b}{\pi}$
5. Suppose your grade g on an exam depends on the number of hours h you study for it according to the equation

$$
g=5 h^{8}+50 \text { where } 0 \leq h \leq 10
$$

(a) What grade do you expect if you study for 8 hours?
(b) What does the y-intercept represent?
(c) What does the slope represent?

6. Suppose that A varies directly as z and that $A=100$ when $z=12$.
(a) Write an equation that expresses this variation.
$A=k z$
=)
$k=\frac{100}{3^{12}}=\frac{50}{6}=\frac{25}{3}=8 . \overline{3}$
$\begin{array}{cc}\uparrow \\ 100 & \imath_{1} \\ ? & 12\end{array}$
(b) What is the value of A when $z=177$ \qquad

$$
A=8 . \overline{3} z t
$$

$$
=5.8
$$

$$
y=k x \cdot \frac{1}{w}=\frac{k x}{w} \Rightarrow \frac{7}{12} 10=\frac{k \cdot 12}{7} \frac{1}{12}=\frac{7}{12} \cdot 10
$$

7. $[$ Suppose that Y varies directly as x and inversely as w and that $Y=10$ when $x=12$ and $w=7$.
(a) Write an equation that expresses this variation.
(b) What is the value of Y when $x=7$ and $w=10$?

≈ 4.1

$$
5.8 \frac{(7)}{10}=(.58) 7=4.1
$$

8. Let $f(x)=x^{2}+\sqrt{x}-\frac{1}{x-1}$.
(a) Evaluate $f(0)$ and $f(2)$.
(b) What is the domain of $f(x)$?

$[0,1) \cup(1, \infty)$
9. A function f has the following verbal description: "multiply by 3 , then subtract one". (a) Find a formula that expresses f.
(b) Find the inverse function of $f(x)$.

$$
\begin{aligned}
& f(x)=3 x-1 \\
& f^{-1}(x)=\frac{x+1}{3}
\end{aligned}
$$

$$
\begin{aligned}
& x=3 y-1 \\
& \frac{x+1}{3}=\frac{3 y}{3} \\
& y=\frac{x+1}{3}
\end{aligned}
$$

(c) verbal description for (b): "add one, then divide by 3 ".

$$
x=y^{3} \Rightarrow y=\sqrt[3]{x}
$$

10. Does $f(x)=x^{2}$ have an inverse function? (If so what is it?) Does $f(x)=x^{3}$ have an inverse function? (If so what is it?)

$$
y=x^{2}
$$

$\operatorname{sing}_{x}=y^{2}$
$\pm \sqrt{x}=y$
or

kill whore
of y being
Fails hovizontel
a functor s of x.

$$
\text { line test } \Rightarrow f(x) \text { not } 1-1 \text {. }
$$

11. Let $f(x)=x^{3}-16 x$

(a). Find the local max and min of $f(x)$ and the values of x at which they occur.

(b) Determine the range of $f(x)$ on the domain $[-5,5]$.
 max y value
attained]
Solve (c) Find the intervals on which f is increasing and on which f is decreasing. \qquad
solve
$f(x)=\varnothing$

$$
\begin{aligned}
& \text { local where } \\
& \text { occurs }
\end{aligned}
$$

$x^{3}-16 x=0$	$x=9$
$x\left(x^{2}-16\right)=0$	\Rightarrow

Table

$$
\begin{aligned}
& x-16 x=0 \quad x=8 \\
& x\left(x^{2}-16\right)=0 \quad \Rightarrow \quad x= \pm 4
\end{aligned}
$$

$$
\begin{aligned}
& \text { Table } \\
& \begin{array}{c|c}
x & x^{3}-16 x \\
10 & 1000-160 \\
-10 & -1000+160
\end{array}
\end{aligned}
$$

be careful

 rene is not alware found(a) endpoints

12. Let
$f(x)=\left\{\begin{array}{cc}1-x & \text { if } x<1 \\ 3 & \text { if } x=1 \\ 2 x+1 & \text { if } x>1\end{array}\right.$
(a) Evaluate $\mathrm{f}(0)$.
(b) Evaluate f(1).
(c) Evaluate f(2).
(d) Evaluate $f(f(0))$.
(e) Evaluate $\mathrm{f}(\mathrm{f}(\mathrm{f}(0)))$.
(f) Plot a graph of $f(x)$.

1

3

5
3

7
13. If $f(x)=x^{2}+1$ and $g(x)=\underset{\sim}{\downarrow}$ evaluate
\qquad
(a) $f \circ g=f(g(x))=(x-3)^{2}+1$
(b) $g \circ f=g(f(x))=\left(x^{2}+1\right)-3$
(c) $f(g(3))$
$x^{2}-2$
(d) $g(g(3))=3-3=0 \longmapsto g(0)=-3$
(e) $g \circ g \circ g$
111^{\prime}
$g\left(\frac{\left.\left.g(\cos +t)^{\prime}\right)\right)}{x-3-3}\right.$
$x-3-3$
$g(x-6)=(x-4)-3$
$x=\frac{y-5}{8-y}$ cross mut $\Rightarrow \begin{aligned} x(8-y) & =y-5 \\ 8 x-x y & =y-5 \\ +5+x 5 & +x y+5 \\ 8 x+5 & =x y+y=y(x+1)\end{aligned} \quad y=\frac{8 x+5}{x+1}$
14. Find the inverse function of $f(x)=\frac{x-5}{8-x}$.
15. Find the inverse function and graph $f(x)$ and $f^{-1}(x)$ on the same axis.
(a) $f(x)=\sqrt{4-x}$ for $0 \leq x \leq 4$
$y=4-x^{2}$
(b) $f(x)=2 x+1$
$x=\sqrt{4-y} \Rightarrow x^{2}=4-y$

$$
y=4-x^{2}
$$

$\frac{x-1}{2}=\underbrace{\frac{x}{2}-\frac{1}{2}, y \text { int }}$

$$
s \log x=\frac{1}{2}
$$

