SOLUTIONS

Math 111 :: Fall 2014
Final Exam Practice

1. Evaluate the function below at

$$
\begin{gathered}
\longmapsto f(-5) \\
75=3(-5)^{2} \\
f(0)
\end{gathered}
$$

2. Simplify the expression and eliminate any negative exponents:

$$
\frac{a a^{2} b^{2} b d^{2} c}{a^{2} d^{2} b-b}=\frac{b^{-1}(b d)^{2} c}{\left(a b^{-1} d\right)^{2} a^{-2} b a^{-1} b}
$$

3. Find the solutions to this wacky equation

$$
\pi x^{2}-\sqrt{2} x-e=0
$$

$$
x=\frac{-\sqrt{2} \pm \sqrt{2-4 \pi(-e)}}{2 \pi} \quad \frac{\sqrt{2} \pm \sqrt{2+4 \pi e}}{2 \pi}
$$

4. Find the degree of $f(x)$ (with out expanding the expression by hand). 5 Find all zeros and their associated multiplicities of

$$
f(x)=x(x-4)^{2}(x-8)^{2}
$$

and μ se this information to sketch a graph of $f(x)$.

zeros	0	4	8
multiplicity	1	2	2

5. Find all solutions

$$
\begin{aligned}
& x^{2}\left(x^{2}-7 x+12\right)=0 \\
& x^{2}(x-4)(x=3)=0 \\
& x=0,4,3
\end{aligned}
$$

6. Factor by grouping

$$
y(2 x-3)((2 x-3)+4 y)=y(2 x-3)(2 x+4 y-3)
$$

$$
100-10-6>9
$$

7. Solve the inequalities

$$
\begin{gathered}
x^{2}-x-6<0 \\
(x-3)(x+2)<0 \\
0
\end{gathered}
$$

$x=3, x=-2$
are critical points

$$
\begin{aligned}
& |x-4|<10 \\
\Rightarrow & -10<x-4<10 \\
& -6<x<14 \\
\Rightarrow & (-6,14)
\end{aligned}
$$

8. Suppose x varies jointly with y and the square of z and inversely as w . Also, x is 10 when y and w are equal and $z=2$. Find the value of x when $\mathrm{y}=1, \mathrm{z}=2$ and $\mathrm{w}=3$.
9. The snowpack on Marquette Mountain 1 hour after a storm began was 20 inches. Six hours after the storm began the snowpack was measured to be 30 inches. Assuming the snow fell at a constant rate during the storm, find the equation of the line which models the snowpack level (in inches) t hours after the storm began. Interpret the meaning of the slope of the line in terms of the snowfall.

The slope is the

$$
\begin{gathered}
m=\frac{30-20}{6-1}=\frac{10}{5}=2 \\
y=2 x+b \\
30=2(6)+b \quad(6,30) \\
18=b \\
\Rightarrow \quad y=2 x+18
\end{gathered}
$$

10. Find the equation of the perpendicular bisector of the line segment $A B$ where $A=(-5,10)$ and $B=(11,8)$.
Midpoint (AB)

$$
\begin{aligned}
& \left(\frac{11-5}{2}, \frac{8+10}{2}\right)=\left(\frac{6}{2}, \frac{18}{2}\right)=(3,9) \\
& \text { slope(AB) } \\
& \frac{8-10}{11-(-5)}=\frac{-2}{16}=\frac{-1}{8} \Rightarrow 1 \text { slope }(A B)=8
\end{aligned}
$$

The 1 bisector is a lime with slope $=8$, containing the midpoint $(3,9)$.

$$
\begin{aligned}
& y-9=8(x-3)=8 x-24 \\
& y=8 x-15
\end{aligned}
$$

11. Solve for t.

$$
\begin{aligned}
& 20=10 e^{.02 t} \\
\Rightarrow & 2=e^{.02 t} \\
& \ln (2)=\ln \left(e^{.02 t}\right)=.02 t \cdot \ln (e)
\end{aligned}
$$

12. Rationalize the numerator and simplify start

$$
\begin{aligned}
& \frac{\sqrt{x+h}-\sqrt{x}}{h} \cdot \frac{\sqrt{x+h}+\sqrt{x}}{\sqrt{x+h}+\sqrt{x}} \\
= & \frac{(x+h)-x}{h(\sqrt{x+h}+\sqrt{\alpha})} \\
= & \frac{h}{h(\sqrt{x+h}+\sqrt{\alpha})}=\frac{1}{\sqrt{x+h}+\sqrt{x}}
\end{aligned}
$$

13. Solve for x. (Show your work!)

$$
e^{\left(\ln \left(2 \cdot x^{2}-8 \cdot x+\frac{1}{e}\right)\right)} e^{=(-1)}
$$

raise
both side to powers
of e
the es in cancel each other ont

$$
2 x^{2}-8 x+\frac{1}{e}=e^{-1}=\frac{1}{e}
$$

$$
\begin{aligned}
& 2 x^{2}-8 x=0 \\
& \frac{2 x}{2}(x-4)=\frac{0}{2}=\varnothing \Rightarrow \begin{array}{l}
x(x-4)=\varnothing \\
x=0 \\
x=4
\end{array}
\end{aligned}
$$

14. Find the values of C and b neccessary for the graph of the exponential function $f(x)=C 2^{b x}$ contain the points $(0,3)$ and $(5,1)$.

$$
\begin{aligned}
& \text { Plug } \operatorname{In}(0,3) \\
& 3=C 2^{60}=C \\
& 3=C
\end{aligned}
$$

Now plug in $(5,1)$

$$
1=3 \cdot 2_{5 b}^{b \cdot 5}=3 \cdot 2^{5 b}
$$

Update: $f(x)=3 \cdot 2^{b x}$.
$\Rightarrow \quad \frac{1}{3}=2^{5 b}$ to find b, hit equation with a \log

$$
\begin{aligned}
& \Rightarrow \log _{2}\left(\frac{1}{3}\right)=\log _{2} 2^{5 b}=5 b \\
& \Rightarrow\left\{b=\log _{2}(1 / 3)=5\right\}
\end{aligned}
$$

15. Complete the following steps and graph the function.

$$
f(x)=\frac{x-4}{2 x-4}
$$

Find the domain of the function.
Throw out where denominator $=\varphi$

$$
2 x-4=\theta \Rightarrow x=2 \quad \text { is }(-\infty, 2) \cup(2, \infty)
$$

$$
\begin{aligned}
& x \text {-int: } \\
& x=4
\end{aligned} \quad \begin{aligned}
& \text { set } y=0=\frac{x-4}{2 x-4} \\
& \Rightarrow x-4=0
\end{aligned} \quad \begin{aligned}
& y \text {-int: } \\
& y=1
\end{aligned}
$$

Find the horizontal asymptotes.
as $x \rightarrow \infty \quad \frac{x-4}{2 x-4} \rightarrow \frac{x}{2 x}=\frac{1}{2}$ so

Find the vertical asymptotes. $f(1.9) \approx \frac{\frac{-2}{-.1} \approx 20}{f(1.99) \approx \frac{-2}{-.001} \approx 200 \quad f(2.01) \times \frac{-2}{.01} \approx-200}$

$$
\begin{aligned}
& \text { set } \operatorname{den}=0 \quad 2 x-4=0 \\
& x=2
\end{aligned}
$$

Sketch a graph of $f(x)$.
16. Perform the indicated operations and simplify

$$
\underbrace{x^{2}+2 x y+y^{2}} \quad\} \quad 2 x y
$$

$$
\begin{gathered}
\sqrt{a} \sqrt{a}-\sqrt{a \sqrt{b}+\sqrt{b} \sqrt{a}-\sqrt{b})(\sqrt{a}-\sqrt{b})} \\
a-\sqrt{a b}+\underbrace{\sqrt{b a}}_{\sqrt{a b}}-b \\
\left.\begin{array}{c}
(c) \underbrace{(a b)^{2}-a^{2} b^{2}}_{0} \\
\underbrace{\left(\frac{a}{b}\right)^{2}}_{0}+\frac{a^{2}}{b^{2}} \\
\underbrace{}_{\frac{a^{2}}{b^{2}}}
\end{array}\right\}=2\left(\frac{a^{2}}{b^{2}}\right)
\end{gathered}
$$

17. Factor

$$
\begin{aligned}
& x^{5}+x^{4}+x+1 \\
&x^{4}(x+1)+\underbrace{(x+1}) \\
&=(x+1)\left(x^{4}+1\right)
\end{aligned}
$$

18. Simplify

$$
=\frac{\frac{1}{x}}{\frac{x-1}{x}}=\frac{1}{x} \cdot \frac{x}{x-1}=\frac{1}{x-1}
$$

$$
4(212)=4(200+12)=800+48
$$

19. One number is five more than another number. The product of the $=848$ two numbers is 212 . Use algebra to find the two numbers.

$$
\begin{array}{rlrl}
& n=5+m & m & =\frac{-5 \pm \sqrt{5^{2}-4(-212)}}{2} \\
& n m=212 \\
\Rightarrow & (5+m) m=212 & & =\frac{-5 \pm \sqrt{873}}{2}
\end{array}
$$

$$
m^{2}+5 m-212=0 \text {. One of these is the }
$$

$$
m=\frac{-5-\sqrt{873}}{2}
$$

$$
n=m+5=\frac{5-\sqrt{873}}{2} \text { so }
$$

$$
n \cdot m=\left(\frac{-5-\sqrt{873}}{2}\right)\left(\frac{5-\sqrt{873}}{2}\right)=\frac{-25+873}{4}=\frac{848}{4}=212
$$

20. Solve by completing the square

$$
\begin{aligned}
& x^{2}-10 x-11=0 \\
& x^{2}-10 x+25=11+25 \\
& (x-5)^{2}=36 \\
& x-5= \pm 6 \quad x=11 \text { or } x=-1 \\
& x=5 \pm 6
\end{aligned}
$$

21. Find the inverse function of

$$
\begin{aligned}
& \text { rewrite } \left.\begin{array}{rl}
f(x) & =(2 x-1)^{3} \\
x & =(2 y-1)^{3} \\
x^{1 / 3} & =(2 y-1) \\
x^{1 / 3}+1=2 y
\end{array}\right) y=\frac{x^{1 / 3}+1}{2}=f^{-1}(x)
\end{aligned}
$$

Does $g(x)=(2 x-1)^{2}$ have an inverse function? N0 It's not $1-1$.

Start:

$$
x=\frac{y-1}{2-y}
$$

Find the inverse function of
$\begin{aligned} & \text { Goal. } \\ & \text { isolate y }\end{aligned} f(x)=\frac{x-1}{2-x}$
$\begin{array}{l}\text { cross } \\ \text { mull }\end{array} \underbrace{(2-y) x}_{2 x-y x}=y-1\} \begin{aligned} & y+y x=1 \\ & y(1+x)\end{aligned}$
So $y=\frac{1+2 x}{1+x}=f^{-1}(x)$
22. If $f(x)=(x-1)^{2}$ and $g(x)=\sqrt{x}$. Compute

$$
f(g(x))=(\sqrt{x}-1)^{2}=x-2 \sqrt{x}+1
$$

$$
g(f(x)) \quad \sqrt{(x-1)^{2}}=|x-1|
$$

$$
g(g(16)) \quad \sqrt{\sqrt{16}}=\sqrt{4}=2
$$

23. Compare and discuss the end-behaviors of these three functions

$$
f(x)=\frac{x+5}{x^{2}-10}, g(x)=\frac{x^{3}}{x^{2}+100}, h(x)=\frac{x^{3}}{x^{3}+x}
$$

$f(x)$ - degree of denominator bigger than degree of numertur $\Rightarrow f(x) \rightarrow \varnothing$ as $x \rightarrow \infty$

$$
g(x)-g(x) \rightarrow \infty \quad \text { as } \quad x \rightarrow \infty
$$

$h(x)-h(x) \rightarrow 1$ as $x \rightarrow \infty$ because defers are same $\frac{x^{3}}{x^{3}}=1$.

