Name:
Exam 3 :: Math 111 :: October 28, 2015

1. Let $P=(4,-1)$ and $Q=(-3,4)$ be two points in the coordinate plane.
(a) Find the distance between P and Q.

$$
\sqrt{74}
$$

$$
\begin{aligned}
& \sqrt{(4+3)^{2}+(-1-4)^{2}} \\
& \sqrt{49+25}=\sqrt{74}
\end{aligned}
$$

(b) Find the midpoint of the segment $P Q$.

$$
\left(\frac{4-3}{2}, \frac{-144}{2}\right)=\left(\frac{1}{2}, \frac{3}{2}\right)
$$

\qquad
(c) Find the slope of the line containing P and Q.

$$
-\frac{5}{7}
$$

$$
\frac{\text { rise }}{\text { run }}=\frac{\Delta y}{\Delta \alpha}=\frac{4-(-1)}{-3-4}=\frac{5}{-7}
$$

(d) Find the perpendicular bisector of the line containing P and Q.

$$
y=\frac{7}{5}+\frac{4}{5}
$$

$$
\begin{aligned}
& m=\frac{-1}{(-5 / 7)}=7 / 5, \text { thm }\left(\frac{1}{2}, \frac{3}{2}\right) \\
& y=\frac{7}{5} x+b \quad(x, y) \\
& 3 / 2=7 / 5 \cdot 1 / 2+b \Rightarrow \frac{5}{5} \cdot \frac{3}{2}-\frac{7}{10}=G
\end{aligned}
$$

2. For the circle given by the equation below
find the center

$$
\begin{aligned}
& \left(\begin{array}{l}
(x-h)^{2}+(y-k)^{2}=r^{2} \\
x^{2}+4 x+y^{2}-10 y-20=0 \\
(4 / 2)^{2}=4 \\
\underbrace{x^{2}+4 x+4}+\underbrace{y^{2}-10 y+25}=20+4+25 \\
(x+2)^{2}+(y-5)^{2}
\end{array}\right)=49
\end{aligned}
$$

3. Find an equation of a line that has no x-intercept and has y-intercept equal to 7 .
4. Let L be the line given by $50 x-5 y=25$.
(a) Find the x - and y-intercepts of the graph of this line.

(b) Write the equation of the line in slope-intercept form.

$$
y=10 x-5
$$

$$
-5 y=-50 x+25
$$

(c) What is the slope of the line?
(d) What is the equation of the line parallel to L that passes through the origin? \qquad

$$
b=0
$$

(e) What is the equation of the line perpendicular to L that passes through the origin?

5. Suppose the snowpack depth at Marquette Mountain during winter storm is given by the equation below where h represents the number of hours since the storm began.
$d=2 h+25$ where $0 \leq h \leq 8$

$$
h=0=D
$$

(a) What was the snowpack depth at the beginning of the storm? \qquad

$$
h=5
$$

$$
35
$$

(b) What was the snowpack depth 5 hours after the storm began?
(c) The graph of d is a line. What does its slope of the line represent?

$$
Y=k \cdot x^{2} \frac{1}{w}
$$

6. Suppose that Y varies directly as the square of x and inversely as the cube root of w and that $Y=3$ when $x=5$ and $w=15$.

$$
\psi=.3 x^{2} / \sqrt[3]{w}
$$

(a) Write an equation that expresses this variation.

$$
\left[k=\frac{3 \cdot \sqrt[3]{(a)}}{25}\right)_{\text {Write an equation that expresses this variation. }} \times 3=k \cdot 5^{2} \cdot \frac{1}{\sqrt[3]{15}}
$$

(b) What is the value of Y when $x=4$ and $w=64$?

$$
\approx-1.2
$$

$$
Y=\frac{.3 \cdot 16}{\sqrt[3]{64}}=\frac{.3 \cdot 16}{4}=3.4=
$$

7. Let $f(x)=\sqrt{x}+\frac{1}{x^{2}-4}$
(a) Evaluate $f(4)$

$$
\sqrt{4}+\frac{1}{16-4}
$$

$2 \frac{1}{12}$
(b) What is the domain of $f(x)$?

$$
[0,2) \cup(2, \infty)
$$

$$
\begin{aligned}
& \sqrt{x}=0 \quad[0, \infty) \\
& \frac{1}{x^{2}-4} \Rightarrow x= \pm 2 \\
& \text { (c) Determine the range of } f(x)
\end{aligned}
$$

8. Let $f(x)=\frac{1}{x}$
\qquad
\qquad

$$
-5
$$

(a) Compute the average rate of change of $f(x)$ on the interval $(1,2)$. \qquad

$$
\frac{f(b)-f(a)}{b-a}=\frac{\frac{1}{2}-\frac{1}{1}}{2-1}=
$$

(b) Compute the average rate of change of $f(x)$ on the interval $(10,11)$.

$$
\frac{\frac{1}{11}-\frac{1}{10}}{\frac{11-10}{\frac{10-11}{110}}=\frac{10}{10}}=\frac{1}{10}=\frac{11}{11}
$$

$$
\frac{2}{(x-1)^{2}}+\frac{1(x-1)^{2}}{(x-1)^{2}}
$$

11. If $f(x)=2 x^{2}+1$ and $g(x)=\frac{1}{x-1}$ and $h(x)=5$ evaluate and simplify
(a) $f \circ g$

$$
2\left(\frac{1}{x-1}\right)^{2}+1
$$

$$
\frac{2+(x-1)^{2}}{(x-1)^{2}}
$$

$$
\frac{1}{19-1}=\frac{1}{18}
$$

(b) $g \circ f(3)$

$$
2(3)^{2}+1=19 \xrightarrow[.1]{1+t} g(x)
$$

(c) $g(g(x))$

$$
\frac{1}{\left(\frac{1}{x-1}\right)-1\left(\frac{x-1}{x-1}\right)}=\frac{1}{\left(\frac{2-x}{x-1}\right)}
$$

(d) $(h \circ h \circ h \circ h \circ h)(x)$

$$
h(\underbrace{h(h(h(h(x)) 1)}_{\text {no mattio what this is }}
$$

12. Let

$$
f(x)=\left\{\begin{array}{cc}
6-x & \text { if } x<6 \\
4 & \text { if } x=6 \\
x+1 & \text { if } x>6
\end{array}, 6-(-)\right)
$$

(a) Evaluate $f(0)$.

$$
6-0=6
$$

\qquad

5
(b) Evaluate f(1). 6

(d) Evaluate f(f(-1)).

