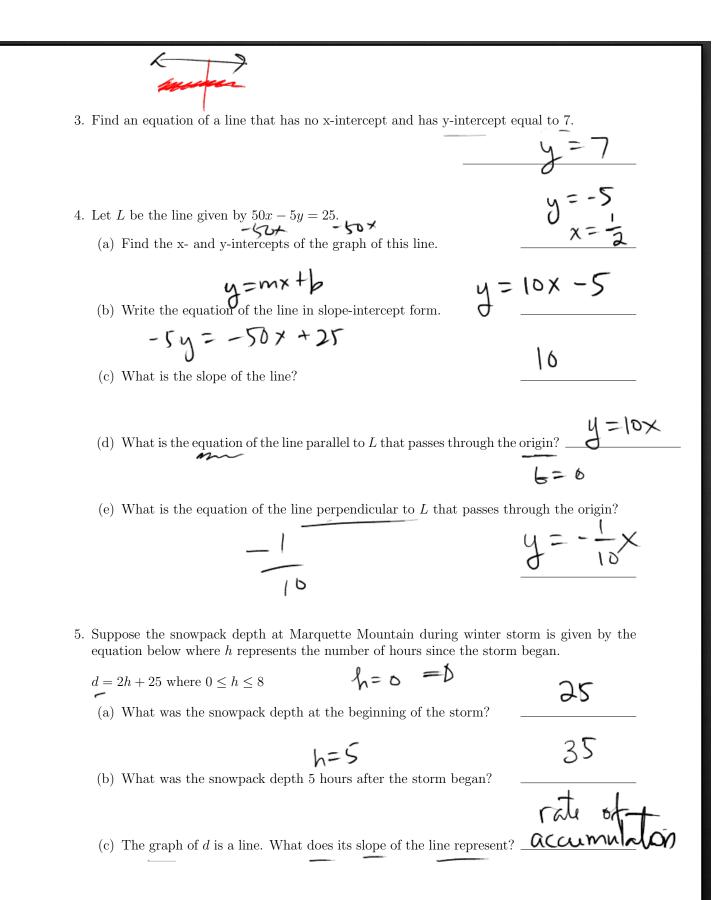
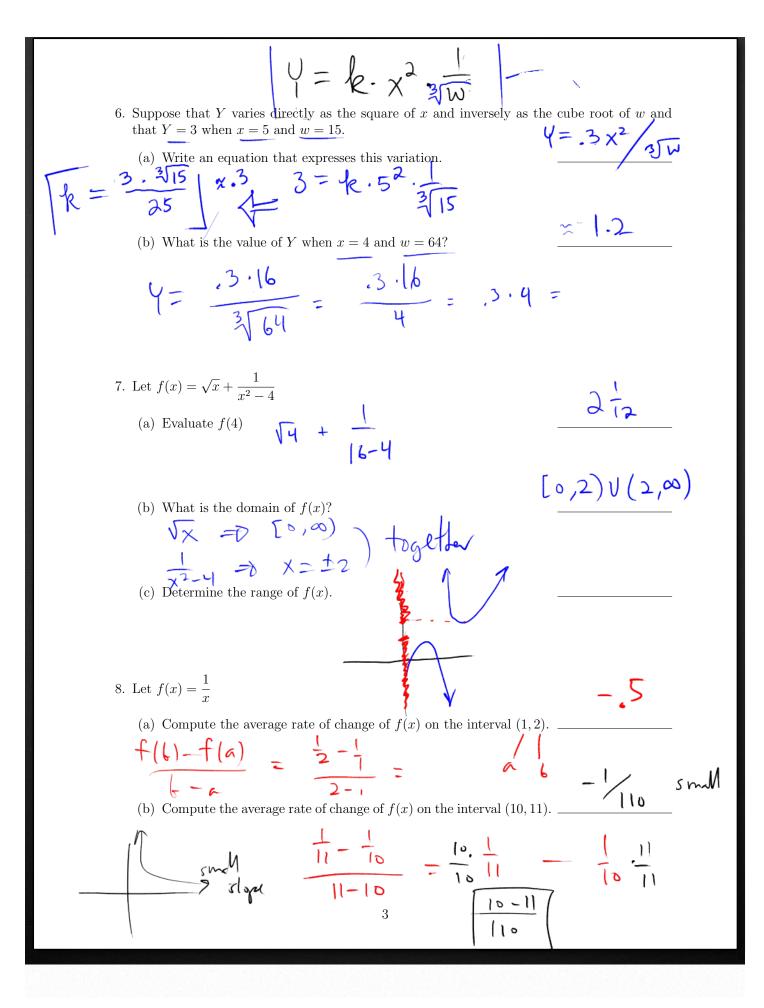
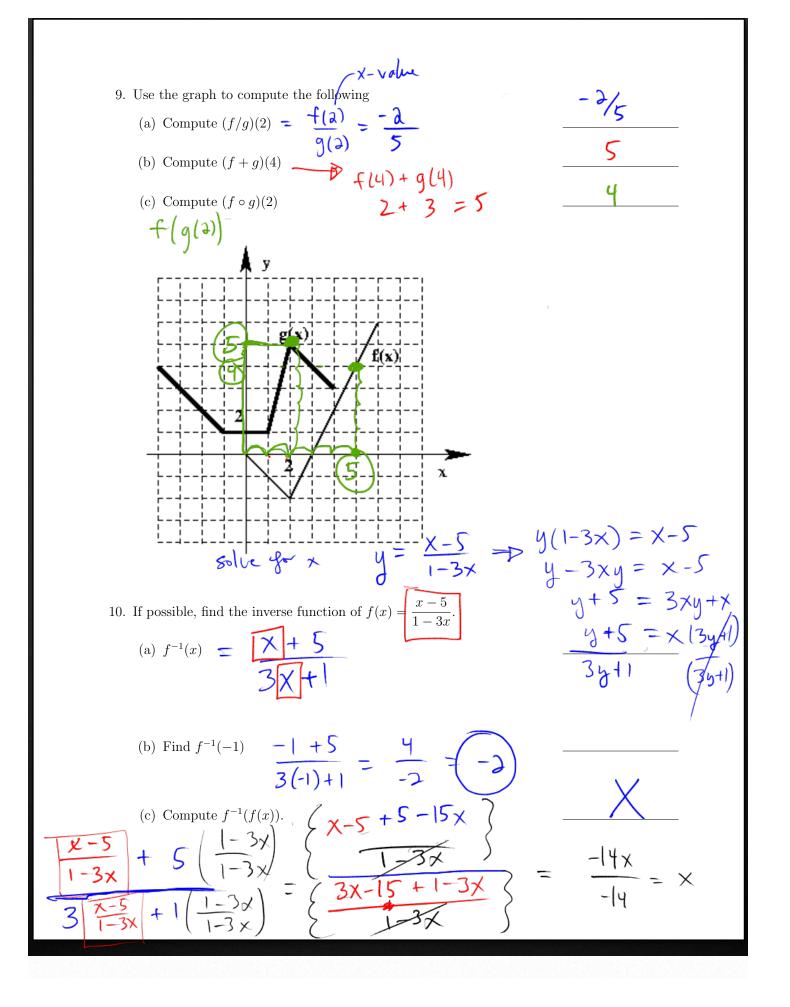
Name: Exam 3 :: Math 111 :: October 28, 2015

1. Let
$$P = (4, -1)$$
 and $Q = (-3, 4)$ be two points in the coordinate plane.
(a) Find the distance between P and Q .
 $\sqrt{(4+3)^2 + (1-4)^2}$
 $\sqrt{44+35} = \sqrt{74}$
(b) Find the midpoint of the segment PQ .
 $(\frac{4-3}{2}, -\frac{1+4}{2}) = (\frac{1}{2}, \frac{3}{2})$
(c) Find the slope of the line containing P and Q .
 $\frac{7}{148} = \frac{A^4y}{A^2} = \frac{4-(-1)}{-3-4} = \frac{5}{-7}$
 $= [r-7=8/6-4/5]$
 $y = \frac{7}{2}x + \frac{1}{5}$
(d) Find the perpendicular bisector of the line containing P and Q .
 $M = -\frac{1}{(-5/7)} = \frac{7}{5}, +\frac{1}{5}Mm$ $(\frac{1}{2}, \frac{3}{-2})$
 $y = \frac{7}{5}x + \frac{1}{5}$
2. For the circle given by the equation below
 $(y_1b)^4 = y$
 $(y_1b)^4 = y$
 $x^2 + 4x + y^2 - 10y - 20 = 0$
 $x^2 + 4x + y^2 - 10y - 20 = 0$
 $x^2 + 4x + y^2 - 10y - 20 = 0$
 $x^2 + 4x + y^2 - 10y - 20 = 0$
 $(x + 2)^2 + (y - 5)^2 = \sqrt{4} 1$







$$\frac{2}{(\chi-1)^{2}} + 1 \frac{(\chi-1)^{2}}{(\chi-1)^{2}}$$
11. If $f(x) = 2x^{2} + 1$ and $g(x) = \frac{1}{x-1}$ and $h(x) = 5$ evaluate and simplify
(a) $f \circ g$
 $2\left(\frac{1}{\chi-1}\right)^{2} + 1$
(b) $g \circ f(3)$
 $2\left(3\right)^{2} + 1 = 19 \xrightarrow{1-to} 36^{(\chi)}$
(c) $g(g(x))$
 $\left(\frac{1}{(\chi-1)^{2}-1}\left(\frac{\chi-1}{\chi-1}\right)^{2} = \left(\frac{1}{\chi-\chi}\right)$
(d) $(h \circ h \circ h \circ h)(x)$
 $h \left(\frac{1}{(\chi(h(h(h(\lambda(\chi)))))} \xrightarrow{1}) = \left(\frac{5}{\chi-\chi}\right)\right)$
 $h \left(\frac{1}{(\chi-1)^{2}-1}\left(\frac{\chi-1}{\chi-1}\right) = \left(\frac{1}{\chi-\chi}\right)$
12. Let
 $f(x) = \begin{cases} 6-x & \text{if } x < 6 & 6-(-1) > 2 \\ 4 & \text{if } x = 6 \\ x+1 & \text{if } x > 6 \end{cases}$
(b) Evaluate f(0).
(c) Evaluate f(1).
(d) Evaluate f(6).
(d) Evaluate f(6).
(e) Evaluate f(6).
(f(-1)).
(