## Name: Exam 3 :: Math 111 :: October 28, 2015

1. Let 
$$P = (4, -1)$$
 and  $Q = (-3, 4)$  be two points in the coordinate plane.  
(a) Find the distance between  $P$  and  $Q$ .  
 $\sqrt{(4+3)^2 + (1-4)^2}$   
 $\sqrt{44+35} = \sqrt{74}$   
(b) Find the midpoint of the segment  $PQ$ .  
 $(\frac{4-3}{2}, -\frac{1+4}{2}) = (\frac{1}{2}, \frac{3}{2})$   
(c) Find the slope of the line containing  $P$  and  $Q$ .  
 $\frac{7}{148} = \frac{A^4y}{A^2} = \frac{4-(-1)}{-3-4} = \frac{5}{-7}$   
 $= [r-7=8/6-4/5]$   
 $y = \frac{7}{2}x + \frac{1}{5}$   
(d) Find the perpendicular bisector of the line containing  $P$  and  $Q$ .  
 $M = -\frac{1}{(-5/7)} = \frac{7}{5}, +\frac{1}{5}Mm$   $(\frac{1}{2}, \frac{3}{-2})$   
 $y = \frac{7}{5}x + \frac{1}{5}$   
2. For the circle given by the equation below  
 $(y_1b)^4 = y$   
 $(y_1b)^4 = y$   
 $x^2 + 4x + y^2 - 10y - 20 = 0$   
 $x^2 + 4x + y^2 - 10y - 20 = 0$   
 $x^2 + 4x + y^2 - 10y - 20 = 0$   
 $x^2 + 4x + y^2 - 10y - 20 = 0$   
 $(x + 2)^2 + (y - 5)^2 = \sqrt{4} 1$ 







$$\frac{2}{(\chi-1)^{2}} + 1 \frac{(\chi-1)^{2}}{(\chi-1)^{2}}$$
11. If  $f(x) = 2x^{2} + 1$  and  $g(x) = \frac{1}{x-1}$  and  $h(x) = 5$  evaluate and simplify  
(a)  $f \circ g$   
 $2\left(\frac{1}{\chi-1}\right)^{2} + 1$   
(b)  $g \circ f(3)$   
 $2\left(3\right)^{2} + 1 = 19 \xrightarrow{1-to} 36^{(\chi)}$   
(c)  $g(g(x))$   
 $\left(\frac{1}{(\chi-1)^{2}-1}\left(\frac{\chi-1}{\chi-1}\right)^{2} = \left(\frac{1}{\chi-\chi}\right)$   
(d)  $(h \circ h \circ h \circ h)(x)$   
 $h \left(\frac{1}{(\chi(h(h(h(\lambda(\chi)))))} \xrightarrow{1}) = \left(\frac{5}{\chi-\chi}\right)\right)$   
 $h \left(\frac{1}{(\chi-1)^{2}-1}\left(\frac{\chi-1}{\chi-1}\right) = \left(\frac{1}{\chi-\chi}\right)$   
12. Let  
 $f(x) = \begin{cases} 6-x & \text{if } x < 6 & 6-(-1) > 2 \\ 4 & \text{if } x = 6 \\ x+1 & \text{if } x > 6 \end{cases}$   
(b) Evaluate f(0).  
(c) Evaluate f(1).  
(d) Evaluate f(6).  
(d) Evaluate f(6).  
(e) Evaluate f(6).  
(f(-1)).  
(