

Ex. $x<3$
set notation
negative infinity

Real Number Live
geometric soluto,
$\frac{(-\infty, 3)}{\text { interval notctan }}$

Ex. $\quad 2 x+1<5$.

Ex.$1-2 x$ <5 -1 -1 $-\frac{2 x}{-2}$ <4 $x>-2$ $(-2, \infty)$	
-2 -1	
-2	

when you divide by negative suital the inequality sig

Ex.

$$
\begin{aligned}
& 2 x+1<\frac{-x}{-x}-3 \\
& x+1<-3 \\
& x \leqslant-4 \\
& (-\infty,-4)
\end{aligned}
$$

$$
\begin{array}{cc}
2 x+1 & <-3 \\
-2 x & -2 x
\end{array}
$$

$$
\begin{array}{r}
1<-x-3 \\
+3 \\
\hline
\end{array}
$$

$$
\begin{aligned}
& 4<-x \\
& -1=1 \\
& -4>x
\end{aligned}
$$

Sane

The solution to:

$$
3 x+1 \geqslant x+5
$$

Ex. Non-linear: Any quadratic ($a x^{2}+b x+c=0$).

Repeat for region (II).
pick $x=-1$

$$
x^{2}+2 x>0
$$

$(-1)^{2}+2(-1)=1-2=-1>0$
FALSE \Rightarrow Region (II) not in
Solution
(iii) $x=1, x^{2}+2 x>0$
$1+2>0$ TruE

To Solve:

1. set LHS $=0$ to Find the 'critical points'
2. Use a number line \& our critical points to test: check.

pick a number in region (I)
$x=-3$ is plugged in:

$$
x^{2}+2 x>0
$$

$$
(-3)^{2}+2(-3)=9-6>0
$$

TRUE \Rightarrow Region I is in the solution.

Region III is in.

$$
\text { collect all solutors }(-\infty,-2) \cup(0, \infty)]
$$

Ex.

- $x^{2}+2 x-15>0$
solve the inequality. 1 st we factor
- $(x+5)(x-3)>0$ weed 0 on RHS for this!'
now find critical points: $x+5=0 \quad x=-5$

(I) $x=-6$ plug into factored for: $(x+5)(x-3)>0$ $(-1)(-9)>0$
(II) $x=0 \Rightarrow(0+5)(0-3)>0$
true. faction FALSE.
(III) $x=4 . \begin{array}{r}(4+5)(4-3)>0 \\ (t)(t)>0\end{array} \quad$ Teut

$$
(-\infty,-5) \cup(3, \infty)
$$

$$
(t)(t)>0
$$

$$
\frac{1-x}{1+x} \leq 0
$$

this will not be

1. Set both numerator $=0 \quad$ s denominator $=0$ but it IS a
$1-x=0 \quad x=1$
$1+x=0 \quad x=-1$
critic h point.

(III) Sill:
true $(-\infty,-1) \cup[1, \infty)$ true
(I) $x=-2 \Rightarrow \frac{1-(-2)}{1+(-2)} \leqslant 0 \quad \frac{1+2}{-1}=-3<0$
(IT) $x=0 \quad \frac{1-0}{1+0}=1 \leqslant 0 \quad$ FALSE
(iii) $x=2 \Rightarrow \frac{1-2}{1+2}=\frac{-1}{3}<0$ TruE

NOW PWU In CRITICAL PTS

$$
\begin{aligned}
& x=1 \Rightarrow \frac{1-1}{1+1} \leqslant \frac{0}{2} \leq 0 \quad \text { TRUE } \\
& x=-1 \quad \frac{1-(-1)}{1-1}=\frac{2}{0} \text { DNE. FALSE }
\end{aligned}
$$

$$
\begin{aligned}
& x^{2} \geqslant-5 x+50 \quad \begin{array}{l}
\text { CrITICAL }: \begin{array}{l}
x=-10 \\
\text { POINTS } \\
x=5
\end{array}
\end{array} \\
& x^{2}+5 x-50 \geqslant 0 \Rightarrow(x+10)(x-5) \geqslant 0
\end{aligned}
$$

(I) $x=-11 \Rightarrow(\underbrace{-11+10}_{-1})(\underbrace{-11-5}_{-16}) \geqslant 0$ TRuE
(II) $x=0 \Rightarrow 0^{2}+5.0-50 \geqslant 0$ FALSE
(iii) $x=1 \Rightarrow(6+10)(6-5) \geqslant 0$ TennE
$x=-10 \Rightarrow$ TRUE
$x=5 \Rightarrow$ TRUE

$$
(-\infty,-10] \cup[5, \infty)
$$

Inequalities

Inequalities (1.6) $\frac{3 x+1<x-2}{\operatorname{lin} \quad \text { line }} \quad$ (linear)

$\left(-\infty,-\frac{3}{2}\right)$
interud notate
when is this line $y=x-2$ above $y=3 x+1$?

$$
\begin{aligned}
& 2 x+1<-2 \\
& \frac{2 x}{-1}-\frac{-3}{2} \\
& \frac{x<-\frac{3}{2}}{} \quad \text { set notation }
\end{aligned}
$$

Ex.

$$
-3 x+1<5<2 \begin{array}{ll}
-3 x+1 & <5 \\
+3 x & +3 x
\end{array}
$$

Solve:

$$
\begin{aligned}
& -\frac{-1}{-3 x<4} \\
& x>\frac{4}{-3}
\end{aligned}
$$

$$
y=x^{2}
$$

$$
y=x^{2}-9
$$

solve

$$
x^{2}>0
$$

set $\mathrm{RHS}=0$

$$
x^{2}=0 \Rightarrow x=0
$$

"critical.'

in order to find the "critical point" $/ /\left(y=-x^{2}+4\right)=0$

Ex. $\quad x^{2}+2 x>0$
(1). Get 0 on RHS
(2) Set $\angle H S=0$ to find critical points
(3) Critical Points drawn on number line

(4) ion test each region: $x=-5$ (II)

$$
\begin{gather*}
x^{2}+2 x>0 \tag{I}\\
(-5)^{2}+2(-5)>0
\end{gather*}
$$

(III) $x=1 \Rightarrow 1^{2}+2(1)>0$

$$
25-10>0 \text { TRUE }
$$

true

$$
\{x<-2\} \text { or }\{x>0\}
$$

$$
\begin{aligned}
& x^{2}+2 x=0 \quad x=0 \\
& x(x+2)=0 \Rightarrow x=-2
\end{aligned}
$$

Ex. $\quad x^{2} \geqslant-5 x+50$
Caret 0 on RHS

$$
\begin{aligned}
& x^{2}+5 x-50 \geqslant 0 \\
& (x+10)(x-5) \geqslant 0
\end{aligned}
$$

Solve $x^{2}+5 x-50=0$

$$
\begin{aligned}
& (x+10)(x-5)=0 \\
& x=5 \\
& (x=-10) \\
& (-\infty,-10] \cup[5, \infty)
\end{aligned}
$$

(I) $x=-11 \Rightarrow \underbrace{(-11+10)}_{(-1)(-16)=16>0}(-11-5)>0$
(II) $x=0 \Rightarrow \theta^{2}+5.0-50>0$ FALSE
(III) $x=6 \Rightarrow(b+10)(6-5)>0$ TRUE

Test critical points when \leq or .
Solve.
(Ex

$$
\frac{1-x}{1+x} \leq 0
$$

set Num $=0=1-x \Rightarrow x=1$

$$
\begin{aligned}
& \operatorname{Den}=0=1+x \Rightarrow x=-1 \\
& (-\infty,-1) \cup[1, \infty)
\end{aligned}
$$

$$
\begin{array}{l|l}
x=2: \frac{1-(-2)}{1-2}=\frac{3}{-1}<0 \\
x=0=1 \leq 0 \text { FALSE } & x=1 \Rightarrow \frac{1-1}{1+1}=\frac{0}{2}=0 \\
x=-1 \frac{1-(-1)}{1-1}=\frac{2}{0} \text { DUE }
\end{array}
$$

$$
x=2 \Rightarrow \frac{1-2}{1+2} \leq 0 \text { TRuE }
$$

jars

0 on RHS
set $1+x^{2}=0$

$$
\begin{aligned}
& x^{2}=-1 \\
& x=\sqrt{-1}
\end{aligned}
$$

not real

$$
\begin{align*}
1+x & =0 \tag{II}\\
x & =-1 \tag{土}
\end{align*}
$$

$$
\frac{1+4}{1-2}=\frac{5}{7} \leq 0
$$

$$
\begin{array}{l|l}
\frac{1+0^{2}}{1+0}=1 \leq 0 & x=-1 \\
\text { FALSE } & \frac{1+1}{1-1}=\frac{2}{0} \text { oNE }
\end{array}
$$

$$
\begin{aligned}
& x^{2}-4 x-32 \geq 0 \\
& (x-8)(x+4)=0 \Rightarrow x=8, x=-4 \\
& \text { (I) (II) (iii) }
\end{aligned}
$$

$$
\begin{aligned}
& x=-4 \quad x=8 \\
& \text { true } \\
& (-\infty,-4] \cup[8, \infty)
\end{aligned}
$$

other inequalities i absolute value (1.661 .7)
Ex. $\underbrace{13 \leq-\underbrace{-2^{-3}+1}_{\text {horiz }}+1}_{1} \leq 37$
when is the height of the line $6 / w 13 \leq 37$

$$
\frac{12}{-12}-\frac{12 x}{-12} \frac{136}{-12} \Rightarrow-1 \geqslant x \geqslant-3
$$

Ex. $3 x+1 \leq 2 x+7 \leq 5 x-4$ get x 's in the middle

$$
\left.\left.\begin{array}{rl}
3 x & \leq 2 x+6 \leq 5 x-5 \\
-3 x & -3 x
\end{array}\right)-3 x\right]+\begin{aligned}
& \\
& 0 \leq-x+6 \leq 2 x-5 \\
&-6-6
\end{aligned}
$$

Break into tho pieces

$$
\frac{-6}{-1} \leq \frac{-x}{-1}
$$

$$
\begin{aligned}
& -x \leq 2 x-11 \\
& -2 x \\
& -2 x
\end{aligned}
$$

$$
-2 x-2 x
$$

$$
\begin{aligned}
& 6 \geqslant x, \\
& 0
\end{aligned}
$$

$$
6 \geqslant x \geqslant \frac{11}{3}
$$

Ex.

$$
\begin{gathered}
7 x-1 \leq 3 x+2 \leq x+5 \quad x=1 \\
7(1)-1 \leq 3(1)+2 \leq 1+5 \quad \text { outside } \\
\frac{6}{6} \leq \underbrace{}_{6} \quad \text { intersed. } \\
7 x-1 \leq 3 x+2 \text { False } \\
\frac{3 x+2 \leq x+5}{-3 x}-3 x \\
\hline 4 x-1 \leq 2 \\
4 x \leq 3 \\
x \leq \frac{3}{4}
\end{gathered}
$$

intersect the solutions (find what's common to both)

Absolute Value. $|x|=\left\{\begin{array}{cl}x & \text { if } x \geq 0 \\ -x & \text { if } x<0\end{array}\right.$ 570

$$
\mid(5)=5
$$

$$
|-7|=-(-7)=7
$$

Ex. Solve $\quad|x-1|=2$

$$
\begin{aligned}
& x-1=2 \\
& x-1=-2
\end{aligned} \Rightarrow \begin{aligned}
& x=3 \\
& x=-1
\end{aligned}
$$

Ex. Solve $|x-1|<2-1^{\text {st }}$ step

$$
\begin{aligned}
& x-1<2 \\
& -2<x-1 \\
& \text { (or) } \begin{array}{l}
-2<x-1<2 \\
+1<+1 \\
-1<x<3
\end{array} \\
& x \in(-1,3) \\
& \text { " lives in" }
\end{aligned}
$$

Practize: Solve:
(1.) ${ }_{-5} \leq 3 x+5 \leq 15$

$$
2 \leq 3 x \leq 10
$$

$$
\frac{2}{3} \leq x \leq \frac{10}{3}
$$

(2.

$$
\begin{aligned}
7 x+1 & \leq 2 x+3 \\
7 x+1 & \leq 2 x+3
\end{aligned}
$$

$$
\leq x+12
$$

Interset

$$
2 x+3 \leq x+12
$$

$7 x^{-1} \leq 2 x+2^{-1} x \leq \frac{2}{5}$, Interse lecause
 these because $x \leq 9$
your answer
(3) $|x-4|<14 \quad$ must satisty botL inequalifis

$$
\begin{aligned}
& -14<x-4<14 \\
& -10<x<18
\end{aligned}
$$

Ex.

$$
\begin{aligned}
& \left|\frac{x-7}{-3}\right| \leq 2 \\
& \frac{|x-7|}{|-3|} \leq 2 \\
& \frac{|x-7|}{3} \leq 2 \\
& |x-7| \leq 6 \\
& \begin{array}{r}
-6 \leq x-7 \leq 6 \\
+7 \\
+7
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
\left|\frac{13-7}{-3}\right| & =\left|\frac{6}{-3}\right| \quad\left|\frac{A}{B}\right|=\frac{|A|}{|B|} \\
& =|-2| \quad \text { always true } \\
& =2
\end{aligned}
$$

$$
1 \leqslant x \leqslant 13
$$

Ex.

$$
\begin{aligned}
& 5 \mid|-x| \\
&+3-30 \\
& \frac{5}{5}|1-x|<\frac{7}{5} \\
&|1-x|<\frac{7}{5}
\end{aligned} \Rightarrow \frac{-12}{5}<-x<\frac{2}{5}
$$

More Inequalities $\frac{1}{4}$ Absolute Value - Sector $1.6 \leqslant 1.7$ horiz. line line horiz. live
Ex. $13 \leq-12 x+1 \leq 37$ Solve find x-values
$\frac{-1}{-12} \leqslant \frac{-1}{-12 x}<\frac{-1}{-12} \int^{-12}$ so that both inequalities are true.

$$
-1 \geqslant x \geqslant-3
$$

$$
\text { " } x \leqslant-1 \quad \frac{1}{\leqslant} \quad x \geqslant-3
$$

Ex, Solve

$$
\begin{array}{ll}
3 x+1 \leq 2 x+7 \leq 5 x-4 \\
3 x+1 \leq 2 x+7 & 2 x+7 \leq 5 x-4 \\
-2 x-2 x & 7 \leq 3 x-4 \\
x+1 \leq 7 & 11 \leq 3 x \\
x \leq 6 & \frac{11}{3} \geqslant x
\end{array}
$$

greater then $\frac{11}{3}$

$$
\frac{11}{3} \leq x \leq 6
$$

Practice: Solve.

$$
\begin{aligned}
7 x-4 & \leq 5 x+1
\end{aligned} \quad \leq 3 x+2 .
$$

Absolute Vale

$$
|x|=\left\{\begin{array}{cl|l}
x & \text { if } x \geqslant 0 \\
-x & \text { if } x<0 & |x|=5 \\
& x=\{-5,5\}
\end{array}\right.
$$

$$
|-3|=\left\{\begin{array}{cc}
-3 & -3 \geqslant 0 \\
-(-3) & -3<0
\end{array}\right.
$$

Eq $\left|\frac{x-7}{-5}\right| \leq 2$
(\#) $\left|\frac{A}{B}\right|=\frac{|A|}{|B|}$

$$
\begin{aligned}
& \frac{|x-7|}{|-5|} \leq 2 \\
& \frac{|x-7|}{5} \leq 2 \Rightarrow
\end{aligned}
$$

$$
|x-7| \leq 10
$$

$$
-10 \leq x-7 \leq 10
$$

$$
-3 \leq x \leq 17
$$

$$
x \in[-3,17]
$$

$$
\begin{aligned}
& \text { Ex. } \quad|x-1|<5 \text {, This Problem...1st step } \\
& |x-1|<5 \text {-This Problem...1 st step } \\
& -5<x-1 \\
& x-1<58+\sqrt{-5<x-1<5} \\
& -4<x<6 \\
& \Rightarrow x \in(-4,6)
\end{aligned}
$$

practice
(1)

$$
\begin{array}{cccc}
5|x+1|-3 & <4 & \frac{-5}{5} & \frac{-5}{5} \\
5|x+1|<7 & -\frac{7}{5}<x+1<\frac{7}{5} \\
-7<5(x+1)<7 \Rightarrow & -1 & \frac{-12}{5}<x<\frac{2}{5} \\
-7<5 x+5<7
\end{array} \Rightarrow \frac{-12}{5}<\frac{5 x}{5}<\frac{2}{5}
$$

(2)

$$
\begin{aligned}
& |1-x|<12 \\
& -12<1-x<12 \Rightarrow-1 \Rightarrow-\frac{13}{5}<x<\frac{2}{5} \\
& -1<-1
\end{aligned}
$$

(3) $4-x \leq 3 x+1.5 \leq x+1$

$$
\begin{gathered}
4-x \leq 3 x+1.5 \\
+x+x \\
4 \leq 4 x+1.5 \\
\frac{2.5}{4} \leq x \\
.625 \leq x
\end{gathered}
$$

$$
\begin{aligned}
& \text { No } \\
& \text { Solutions }
\end{aligned}
$$

$$
\begin{gathered}
3 x+1.5 \leq x+1 \\
\frac{-x}{2 x+1.5} \leq 1 \\
2 x \leq-.5 \\
x \leq \frac{-\frac{1}{2}}{2}=\frac{-1}{4} \\
x \leq-.25
\end{gathered}
$$

For full credit, circle your answers and show all your work!

1. Factor the expression completely.

$$
\begin{gathered}
x^{5}+6 x^{3}+x^{2}+6 \\
\left(x^{5}+6 x^{3}\right)+1\left(x^{2}+6\right) \\
x^{3}\left(x^{2}+6\right)+1\left(x^{2}+6\right) \\
\left(x^{2}+6\right)\left(x^{3}+1\right) \\
\sqrt{x^{5}}=\sqrt{y^{4} \cdot y}=\sqrt{y^{4}} \sqrt{y} \\
=y^{2} \sqrt{y}
\end{gathered}
$$

$$
\sqrt{x^{2} y^{5}} \sqrt[3]{x^{3} y^{2}} \sqrt[5]{x^{3}}
$$

into the form $x^{r} y^{s}$.

3. Factoring

Factor the following expression:

$$
\prod_{\substack{3 x^{2}+17 x-28 \\ \Rightarrow}}^{\substack{\text { sion: }}}(3 x-4)(x+7)
$$

4. Express the expression without parentheses:

$$
\begin{gathered}
3 a b-3 a 2 d+7 c b-14 c d \\
3 a b-6 a d+7 b c-14 d c
\end{gathered}
$$

$$
\frac{1}{2}+\frac{1}{2}=\frac{1}{2}+\frac{\sqrt{a+h}=a}{h}+\frac{\sqrt{a+h}+a)}{\sqrt{a+h}+a}
$$

6. Simplify the expression

$$
\begin{gathered}
\frac{(x+4)}{(x+4)} \frac{2}{x+3}-\underbrace{\frac{1}{x^{2}+7 x+12}} \\
\frac{2 x+0}{(x+4)(x+3)}-\frac{1}{(x+3)(x+9)}=\frac{2 x+7)}{(x+4)(x+3)}
\end{gathered}
$$

7. Simplify the expression

$$
\frac{x^{2}}{x^{2} y^{2}}-\frac{4^{2}}{x^{2} y^{2}}
$$

$$
\begin{aligned}
& \frac{\frac{y}{y} \frac{y}{x}-\frac{x}{y} \frac{x}{x}}{\frac{x^{2}}{x^{2} y^{2}}-\frac{1}{x^{2}} \frac{y^{2}}{y^{2}}}=\frac{\frac{y^{2}-x^{2}}{y x}}{\frac{x^{2}-y^{2}}{x^{2} y^{2}}} \\
& =\frac{\left(y^{2}-x^{2}\right) x y}{\left(x^{2}-y^{2}\right)}=\frac{\left(y^{2}-x^{2}\right) x y}{-1\left(y^{2}-x^{2}\right)}
\end{aligned}
$$

8. Factor the expression completely and simplify your answer. Write your answer with positive exponents. Begin by factoring out the lowest power of each common factor.

$$
\begin{aligned}
& \underline{x}^{2}\left(x^{2}+3\right)^{-4 / 3}\left(7 x\left(x^{2}+3\right)^{-x^{2} / 3 / 3 /(-4 / 3)}-1\right) \\
& \frac{x^{2} \cdot\left(7 x\left(x^{2}+3\right)-1\right)}{\left(x^{2}+3\right)^{4 / 3}}
\end{aligned}
$$

Immediate

Name:
MA111 :: Exam 1 :: September 17, 2015
9. Perform the indicated operations and simplify:

Foll

10. Simplifying Expressions Simplify the expression

$$
\begin{aligned}
& \left(x^{4}\right)^{3} \\
& ={ }_{4}
\end{aligned}
$$

$$
\begin{aligned}
& \text { multiply } \\
& \text { exponents } \\
& \left(\frac{a^{5} y^{2} b^{3} x^{-5} y^{-2}}{x^{4} y^{3} x^{8} b^{5} a^{8}}\right)^{-3}=x^{4} \cdot x^{4} \cdot x^{4} \\
& x^{12}
\end{aligned}
$$

$$
\left(\frac{x^{4} y^{3} x^{8} b^{5} a^{8}}{a^{5} y^{2} b^{3} x^{-5} y^{-2}}\right)^{3}=\frac{x^{12} y^{9} x^{24} b^{15} a^{24}}{a^{15} y^{6} b^{9} x^{-15} y^{-6}}=x^{(12+24+15)} y^{9} b^{6} a^{9}
$$

11. So far this class is \qquad

Box
Depth: x
Lersth: 11-2x

$$
\begin{aligned}
\text { Volume } & =L \cdot W \cdot D \\
& =\underbrace{(11-2 x)(8.5-2 x)(x)}
\end{aligned}
$$

wioth: 8.5-2x

$$
=x\left(93.5-22 x-17 x+4 x^{2}\right)
$$

$$
V_{\text {olum }}=4 x^{3}-39 x^{2}+93.5 x
$$

For full credit, circle your answers and show all your work!

1. Factor the expression completely.

$$
\begin{aligned}
& \left(\begin{array}{l}
\left(x^{5}+6 x^{3}\right)+1\left(x^{2}+6\right) \\
x^{3}\left(x^{2}+6\right)+1\left(x^{2}+6\right)
\end{array}=\left(x^{2}+6\right)\left(x^{3}+1\right)\right. \\
& \\
& =\left(x^{2}+6\right)(x+1)\left(x^{2}-x+1\right) \\
& \sqrt{y^{5}}=\sqrt{y^{4} \cdot y}=\sqrt{y^{4}} \sqrt{y}=y^{2} \sqrt{y}=y^{2} \frac{1}{y^{2}}
\end{aligned}
$$

2. Simplifying Expression

Simplify the expression

$$
\sqrt{x^{2} y^{5}} \sqrt[3]{x^{3} y^{2}} \sqrt[5]{x^{3}}
$$

into the form $\overline{x^{r} y^{s}}$

$$
\frac{10}{5}+\frac{3}{5}=\frac{13}{5}
$$

$$
\sqrt{x^{2}} \sqrt{y^{5}} \sqrt[3]{x^{3}} \sqrt[3]{y^{2}} \sqrt[5]{x^{3}} \quad 2+\frac{1}{2}+\frac{2}{3}=\frac{12}{6}+\frac{3}{6}+\frac{4}{6}
$$

$$
x^{\prime} y^{2} y^{1 / 2} x y^{1 / 3} x^{3 / 5}
$$

$$
x^{(1+1+3 / 5)} \cdot y^{\left(2+\frac{1}{2}+\frac{2}{3}\right)}=x^{\frac{13}{5}} \frac{19}{6}
$$

$\begin{array}{cc}1 & 28 \\ 2 & 14 \\ 4 & 7\end{array}$
Name:
MA111 :: Exam 1 :: September 17, 2015
3. Factoring

Factor the following expression:

$$
\operatorname{simion}_{\substack{d \\ x \rightarrow+\pi x-8}}^{\downarrow}=(3 x-4)(x+7)
$$

4. Express the expression without parentheses:

$$
3 a b-6 a d-7 b c-14 c d \text { Foll. }
$$

6. Simplify the expression

$$
\begin{aligned}
& \begin{array}{l}
\frac{(x+4)}{(x+4) \frac{2}{x+3}-\frac{1}{x^{2}+7 x+12}} \underbrace{(x+4)(x+3)}_{(x+3)(x+4)}-\frac{1}{(x+4)(x+3)}=\frac{2 x+7}{(x+4)(x+3)} \\
\frac{2(x+4)}{(x+4)(x+3)}
\end{array} \\
& \text { 7. Simplify the expression }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\frac{y}{y} \frac{y}{x}-\frac{x}{y} x}{\frac{x^{2}}{x^{2} y^{2}}-\frac{1}{x^{2}} y^{2}} \frac{\frac{y^{2}}{y^{2}}}{\frac{y x}{x^{2}}-\frac{x^{2}}{y x}} \frac{\frac{y^{2}-x^{2}}{x^{2} y^{2}}}{x^{2} y^{2}}=\frac{\frac{y x}{x^{2}-y^{2}}}{x^{2} y^{2}} \\
& -x y
\end{aligned}
$$

8. Factor the expression completely and simplify your answer. Write your answer with positive exponents. Begin by factoring out the lowest power of each common factor.

$$
\underbrace{x^{2}\left(x^{2}+3\right)^{-4 / 3}} \frac{\left(7 x^{3}\left(x^{2}+3\right)^{-1 / 3}-x^{2}\left(x^{2}+3\right)^{-4 / 3}\right.}{(-1 / 3-(-4 / 3)}-1)
$$

$$
(x+h)^{2} \neq x^{2}+h^{2}
$$

MA111 :: Exam 1 :: September 17, 2015
9. Perform the indicated operations and simplify:

$$
\begin{aligned}
& (x+h)(x+h)=\frac{x^{2}\left(h x+x h h^{2} h^{2}-x^{2}\right.}{h} \\
& \frac{2 x h+h^{2}}{h}=\frac{h(2 x+h)}{h}
\end{aligned}
$$

10. Simplifying Expressions

Simplify the expression

$$
\left(\frac{a^{5} y^{2} b^{3} x^{-5} y^{-2}}{x^{4} y^{3} x^{8} b^{5} a^{8}}\right)^{\downarrow_{3}}
$$

and give your answer with positive exponents.

$$
15-9=6
$$

$$
-x^{12} 4^{24} x^{15} a^{124} \overbrace{(124+15)}^{51}
$$

$$
=\frac{x-1}{a^{15} y^{6} b^{9} x^{-15} y^{-6}}=x
$$

$$
\begin{aligned}
& \frac{51}{(12+24+15)}{ }^{24-15} \\
& x^{9} y^{69} a^{9}
\end{aligned}
$$

11. So far this class is

$$
x^{51} y^{1} b^{b} a^{3} a^{9}
$$

BoX

$$
\begin{array}{rlrl}
\text { Height }= & V_{0} \mid & =L \cdot W \cdot H \\
\text { Length } & =11-2 x & & =(11-2 x)(8,5-2 x)(x) \\
\text { width } & =8.5-2 x & & =\left(93.5-22 x-17 x+4 x^{2}\right) x \\
\prod_{x 8.5}=88+\frac{11}{2}=38+5.5 \\
& =93.5 \quad V & =4 x^{3}-39 x^{2}+93.5 x
\end{array}
$$

