

Equation of this line is \qquad

$$
y=\frac{1}{2} \cdot x
$$

$$
\begin{aligned}
& (x-10)^{2}+(y+i)^{2}=64 \\
& (0,0) \\
& (10,-8)
\end{aligned}
$$

$$
\left.\begin{array}{l}
x_{1}^{2}+y_{1}^{2}=1 \\
x_{1}=y_{1}
\end{array}\right\} \begin{aligned}
& x_{1}^{2}+x_{1}^{2}=1 \\
& 2 x_{1}^{2}=1
\end{aligned} \Rightarrow x_{1}=\sqrt{\frac{1}{2}}=\frac{1}{\sqrt{2}}
$$

slope of this line $=1$
slope of the red line $=-1 . \int$ slope

$$
\begin{aligned}
y-\frac{1}{\sqrt{2}}=-1\left(x-\frac{1}{\sqrt{2}}\right) & =-x+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} \\
\Rightarrow y & \left.=-x+\frac{2}{\sqrt{2}} \quad \begin{array}{c}
\text { this } \\
\left(x_{2}, y_{2}\right)
\end{array}\right)
\end{aligned}
$$

MORE TOPICS FEM
CH. 2 GOURD
GEOMETRY

To find the x-int: set $y=0$ solve x.

$$
y-\operatorname{ar} \text { : set } x=0 \frac{1}{\}} \text { sole } f y
$$

Ex. $(x-1)^{2}+(y+2)^{2}=4$
x-mints : set $y=0 \Rightarrow(x-1)^{2}+(0+2)^{2}=4$ $(x-1)^{2}=0$
y-intercepts.

$$
\Rightarrow x=1
$$

$$
\begin{aligned}
& x=0 \Rightarrow(-1)^{2}+(y+2)^{2}=4 \\
& \begin{aligned}
(y+2)^{2} & =3 \\
c=(1,-2) \quad y+2 & = \pm \sqrt{3} \\
y & =-2 \pm \sqrt{3}
\end{aligned}
\end{aligned}
$$

Ex. $x^{2}+y^{2}=1$
unit circle, radius $=1$
is $\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{3}}{2}\right)$ on the circle?

$$
\begin{array}{ll}
1 \\
x & 1 \\
y
\end{array}
$$

$$
\left(\frac{\sqrt{2}}{2}\right)^{2}+\left(\frac{\sqrt{2}}{2}\right)^{2} \stackrel{?}{=} 1
$$

if true the the point lives in the circh. $\frac{2}{4}+\frac{2}{4}=1 \curvearrowright$ Yes
Is $(1,1 / 2)$ on the unit circe. $x^{2}+y^{2}=1$
(rio)
Practice

(xes) $(9,32)$
$(1,2) \mathrm{No}$
$(2,5)$ (ives)
Slope $=7$
point: $(2,5)$
$3 x+2 y-\pi=0$
$++2(0)-\pi=0$
(465) $\left(\frac{\pi}{3}, 0\right)$
$(2, \pi)$
(N)

$$
(x-1)^{2}+(y+4)^{2}=36
$$

$$
\left(\frac{3 \sqrt{2}+1}{2}, 3 \sqrt{2}-1\right)
$$

$$
\underbrace{(3 \sqrt{2}+1}_{(3 \sqrt{2})^{2}}-1)^{2}+(\underbrace{3 \sqrt{2}+3)^{2}}_{\neq 18}=36
$$

Equation of the blue line?

$$
\begin{aligned}
& \text { Slope }=-1 \\
& y=-1 x+6 \\
& \frac{\sqrt{2}}{2}=-\frac{\sqrt{2}}{2}+6 \\
& r_{2}=\frac{y \sqrt{2}}{2}=6
\end{aligned}
$$

 circle $x^{2}+y^{2}=1$

$$
x_{1}^{2}+y_{1}^{2}=1
$$

$$
b y_{1}^{2}+y_{1}^{2}=1
$$

$$
\begin{aligned}
& x^{2}+y^{2}=1 \quad \begin{array}{l}
2 y_{1}^{2}=1 \\
y_{1}^{2}=\frac{1}{2} \\
x_{1}=\frac{\sqrt{2}}{2} \quad \\
y_{1}=\frac{1}{\sqrt{2}} \cdot \sqrt{2} \\
y_{1}=\frac{\sqrt{2}}{2}
\end{array}
\end{aligned}
$$

Find an equation of the line that intersects the line $y=3 x$ at a right angle, at a point distance 5 from the origin.

If yours on cire you're distance 5 from

Challenge: Find an equation of a line that intersects the line $y=3 x$ at a right angle, and at a point distance 5 from the origin.

what relationship (formula /equation) exists b/w $x, \frac{1}{\&} y_{1}$?

$$
\begin{gathered}
d=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}} \\
\text { dist. bi }\left(x_{1} y_{1}\right) \\
\frac{1}{2}\left(x_{2}-y_{0}\right) \\
0
\end{gathered}
$$

$$
25=x_{1}^{2}+\left(x_{1}^{2}\right.
$$

distance 5 from $(0,0)$
$y_{1}=3 x_{1}$ because $\left(x_{1}, y_{1}\right)$ lives on the sine $y=3 x$.
substituting: $25=x_{1}^{2}+\left(3 x_{1}\right)^{2}$

$$
\frac{25}{10}=\frac{10 x_{1}{ }^{2}}{10} \Rightarrow 2,5=x_{1}^{2}
$$

$$
y_{1}=3 \sqrt{2.5}
$$

$$
s=x_{1}=\sqrt{2,5}
$$

point
slope is

$$
\begin{array}{r}
y-3 \sqrt{2,5}=-\frac{1}{3}(x-\sqrt{2,5})=-\frac{x}{3}+\frac{\sqrt{2,5}}{3} \\
y=-\frac{1}{3} x+\frac{10 \sqrt{2,5}}{3}+\frac{\sqrt{2,5}}{3}+\frac{9}{3 \cdot 3} \frac{\sqrt{2,5}}{3}
\end{array}
$$

