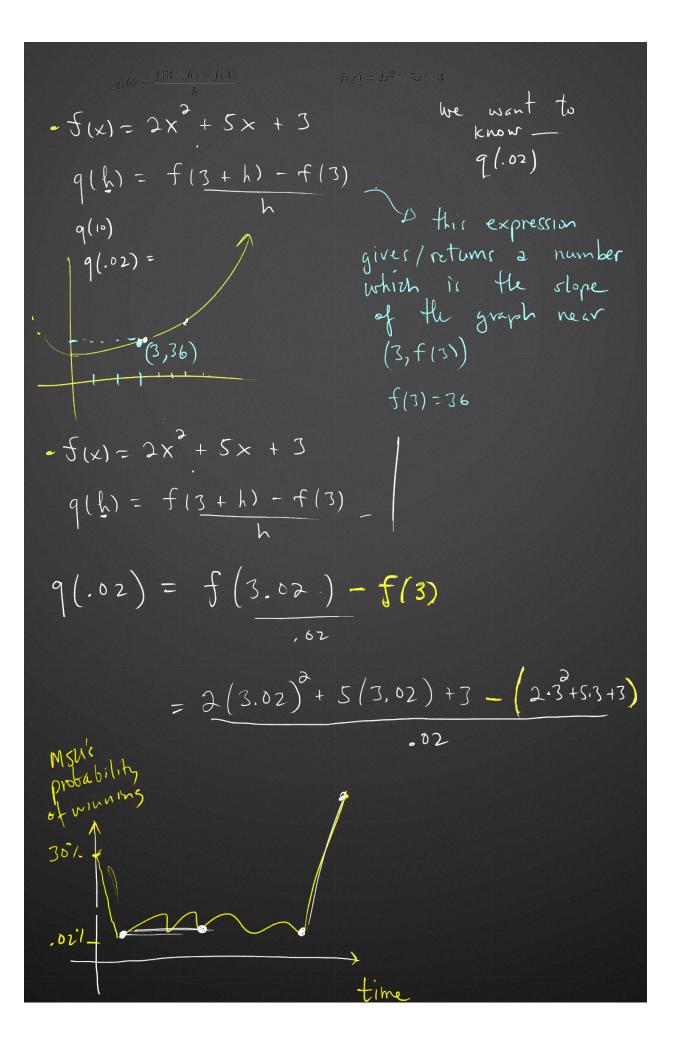
We 3.1.2

$$f(x) = 2$$

If there's no x, there's nothing to replace, so
 $f(a) = 2$, $f(-1) = 2$, $f(a+h) = 2$
 $f(a+h) = \frac{1}{h} = \frac{1}{h} = 0$.

Average Rate of Change f(b) - f(a)Arg. Rate of Change is O 6-a Ex, f(x) = X + 1. Compute Avg. Rate Interval as in (man) of Change of F(x) (-3, -2) f(-2) - f(-3) = 17 - 82 = -65 $f(1) - f(-1) = \frac{a - a}{a} = 0$ (-1, 1) $\int f(s) - f(4) = s^{4} - 4^{4} = 625 - 256 = 369$ (4,5)



What's the domain? $f(x) = \frac{x + 10}{x^2 - 25}$ · check for radicels · check for div. by O nule out $x^2 - 25 \neq 0$ x2 \$ 25 X # ±5 Interval Notation $(-\infty, -5)U(-5, 5)U(5, \infty) = 1R - \xi - \xi - \xi, 5\}$ Topen ?

3.1.10

$$f(x) = \sqrt{\frac{4-11x}{10+4x}}$$
The ide of $\sqrt{\frac{4}{10}}$
Solve:

$$\frac{4-11x}{10+4x} \ge 0$$

$$\frac{4+33}{10-12} | \frac{4}{10} \ge 0$$

$$\frac{4+33}{10-12} | \frac{4}{10} \ge 0$$

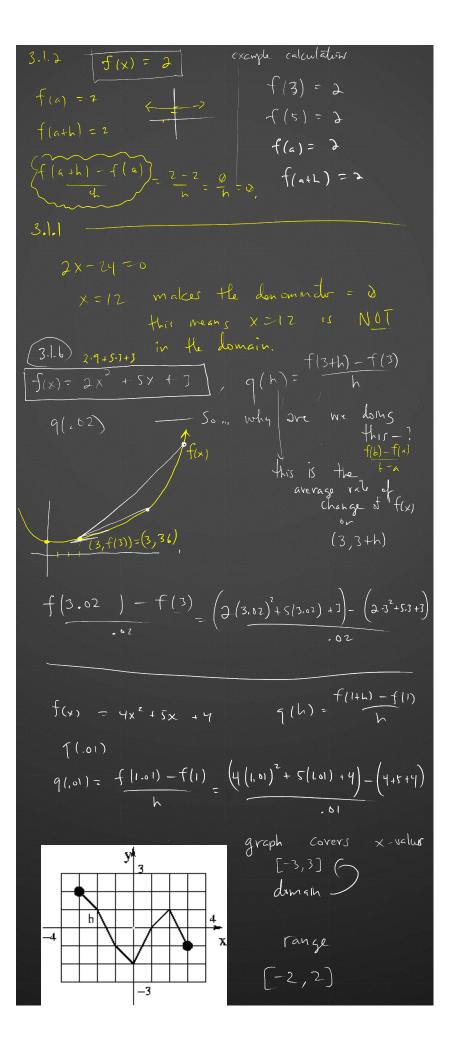
$$\frac{4-11x}{14} \ge 0$$

$$\frac{4-11x}{10} = 0$$

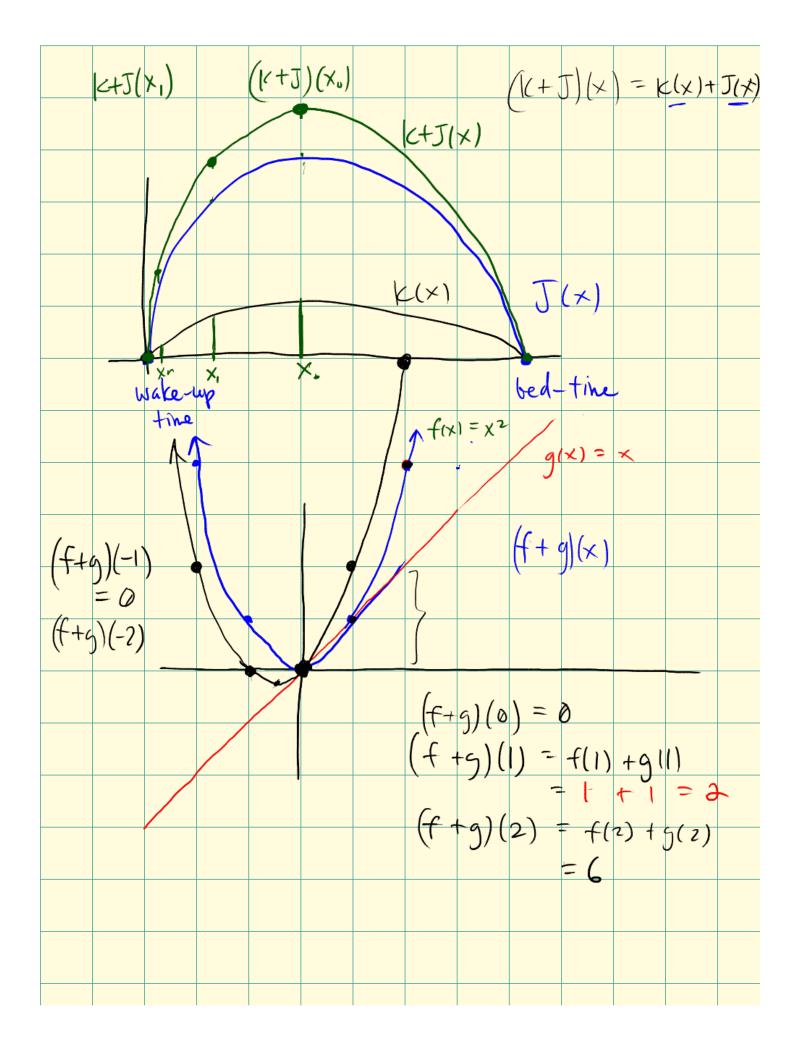
$$\frac{4-11x}$$

"isolate y... $4x = y^2$ 3.2.1 ". yes, a function if y is uniquely determined $\pm \sqrt{\chi} = y \qquad (N_0)$ $\partial_{+} 6 + \chi = y^{3}$ (m +/-) 3/6+x = y (No +/. ... odd) 3. $\chi^2 y + y = 7$ $y(x^2+1)=3 =) y = \frac{3}{x^2+1}$ yes 4. $[x+4] = [y^2 -) = \pm (x+4)$

3.1.51
$$f(x) = \frac{x-5}{x^2-35}$$
 domain? Interval
 $x^2 = 35$
 $x = \pm 5$
Therefore $(-3), 5) \cup (-5, 5) \cup (5, \infty)$
3.2.1 sometimes equations determine from tooir.
Smathwall 195.
COAL: Isolate y. 14 your don't have a $\pm x$ or PHS
 $(-3), 5) \cup (-5, 5) \cup (5, \infty)$
 $(-3), 5) \cup (-5, 5) \cup (5, \infty)$
3.2.1 sometimes equations determine from tooir.
Smathwall 195.
 $(-3), 5) \cup (-5, 5) \cup (5, \infty)$
 $(-3), 5) \cup (-5, 5) \cup (-5, 5) \cup (-5, \infty)$
 $(-3), 5) \cup (-5, 5) \cup (-5, 5) \cup (-5, 5)$
 $(-3), 5) \cup ($



Combining Functions:
Given old functions:
$$f(x) = \sqrt{x}$$
, $g(x) = \frac{1}{x+1}$
build now ones:
 $(f + g)(x) = f(x) + g(x) = (ix) + (\frac{1}{x+1})$
domain: $x \ge 0$, $(x \neq -1)$
domain: $x \ge 0$, $(x \neq -1)$
domain: $x \ge 0$, $(x \neq -1)$
 $domain: (x \ge 0)$, $(x \neq -1)$
 $domain: (x \ge 0)$, $(x \neq -1)$
 $(f + g)(x) = \sqrt{x} + (\frac{1}{x+1}) = \frac{\sqrt{x}}{x+1}$
 $domain: domain of f intervat with domain of g
 $(f + g)(x) = \frac{f(x)}{g(x)} = \frac{\sqrt{x}}{x+1} = (x+1)$. $f(x)$
 $(f + g)(x) = \frac{f(x)}{g(x)} = \frac{\sqrt{x}}{x+1} = (x+1)$. $f(x)$
 $(f + g)(x) = \frac{f(x)}{g(x)} = \frac{\sqrt{x}}{x+1} = (x+1)$. $f(x)$
 $domain f(x) = (f(x)) = \sqrt{x}$, $g(x) = \frac{1}{x-1}$
 $domain f(x) = (f(x)) = \frac{\sqrt{x}}{x+2} = (x-10)\sqrt{x}$
 $(f + g)(x) = \frac{f(x)}{g(x)} = \frac{\sqrt{x}}{x-10}$
Next. $f(x) = \sqrt{x}$, $g(x) = \frac{1}{x-10}$
 $(x + 1)$
 $(x + 1)$
 $(x + 1)$
 $(x + 1)$
 $(x + 20)$ $(x + 1)$
 $(x + 20)$ $(x + 1)$
 $(x + 1)$
 $(x + 20)$ $(x + 1)$
 $(x + 20)$ $(x + 1)$
 $(x + 1)$
 $(x + 20)$ $(x + 1)$$



MA111 :: Section 3.6 :: Combining Functions

Four easy way to make new functions from old ones

- 1. Add: (f+g)(x) = f(x) + g(x)
- 2. Subtract: (f g)(x) = f(x) g(x)
- 3. Multiply: (fg)(x) = f(x)g(x)
- 4. Divide: $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$

The domain of the new function is the intersection of the domains of the original functions, minus any points that make the new function undefined.

If
$$f(x) = x^2$$
, $g(x) = x - 2$, $h(x) = \frac{1}{x}$, $H(x) = \frac{1}{x^2}$, $F(x) = 1$ $G(x) = \sqrt{x}$ compute:

$$(f+g)(x) = \frac{\chi^{2} + \chi - 2}{(f+g)(x)} (f-h)(x) = \frac{\chi^{2} - \frac{1}{\chi}}{(f-h)(x)} (f-h)(x) = \frac{\chi^{2} - \frac{1}{\chi}}{(gF)(x)} (gF)(x) = \frac{\chi^{2} - \frac{1}{\chi}$$

To find (f+g)(x) you can use graphical addition. Consider $f(x) = x^2$ and g(x) = x and h(x) = 1.

MA111 :: Section 3.6 :: Combining Functions

The most important way to combine functions is by **composition of functions**.

You basically apply each function rule, one after the other.

For example, if $f(x) = x^2$ and g(x) = 2x + 1, we write

$$h(x) = f(g(x)) =$$

So you first applied the rule g, then applied the rule f. Notation:

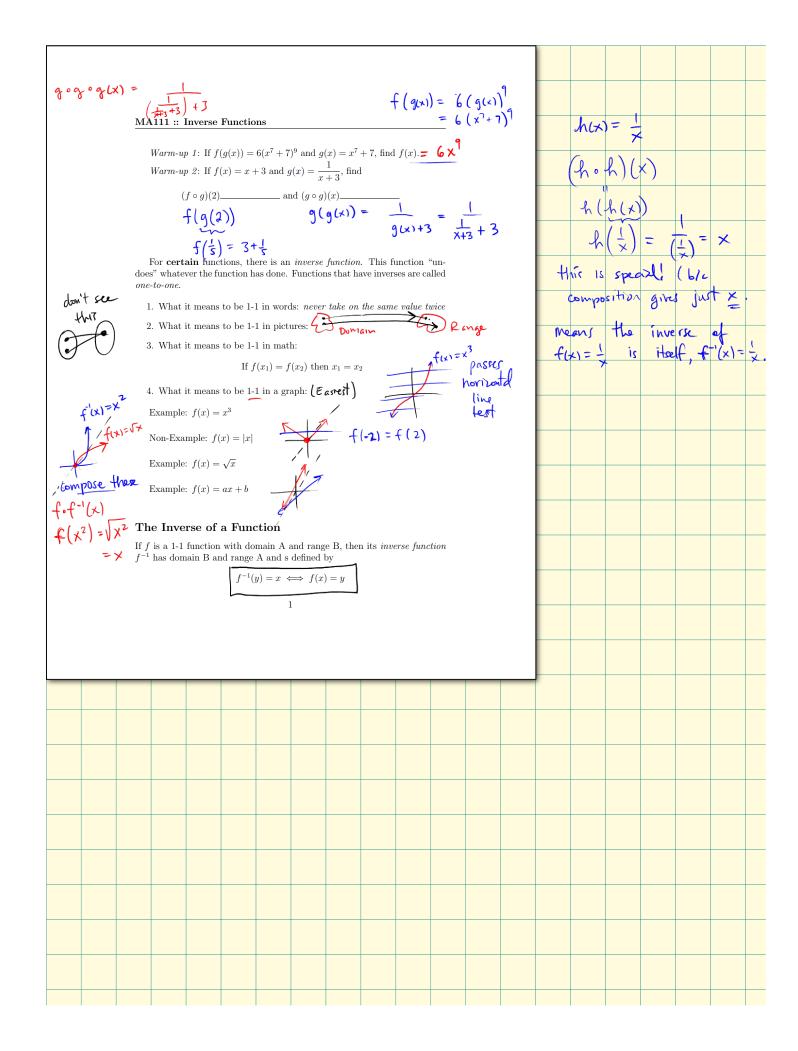
$$(f \circ g)(x) = f(g(x))$$

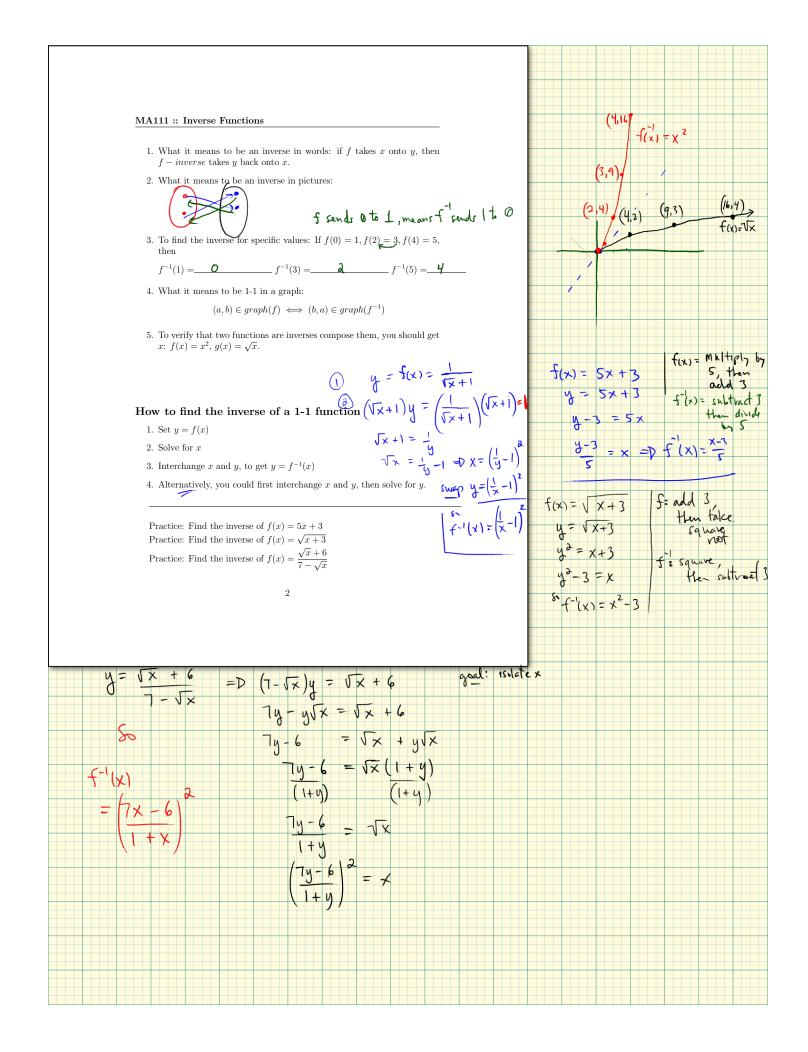
$$H\left(g\left(f(x)\right)\right)$$
If $f(x) = x^{2}$, $g(x) = x - 2$, $h(x) = \frac{1}{x}$, $H(x) = \frac{1}{x^{2}}$, $F(x) = 1$ $G(x) = \sqrt{x}$
compute:
$$f\left(g(x)\right) = (x - 2)^{2}$$

$$f\left(h(x)\right) = f\left(\frac{1}{x}\right) = -\frac{1}{x^{2}}$$

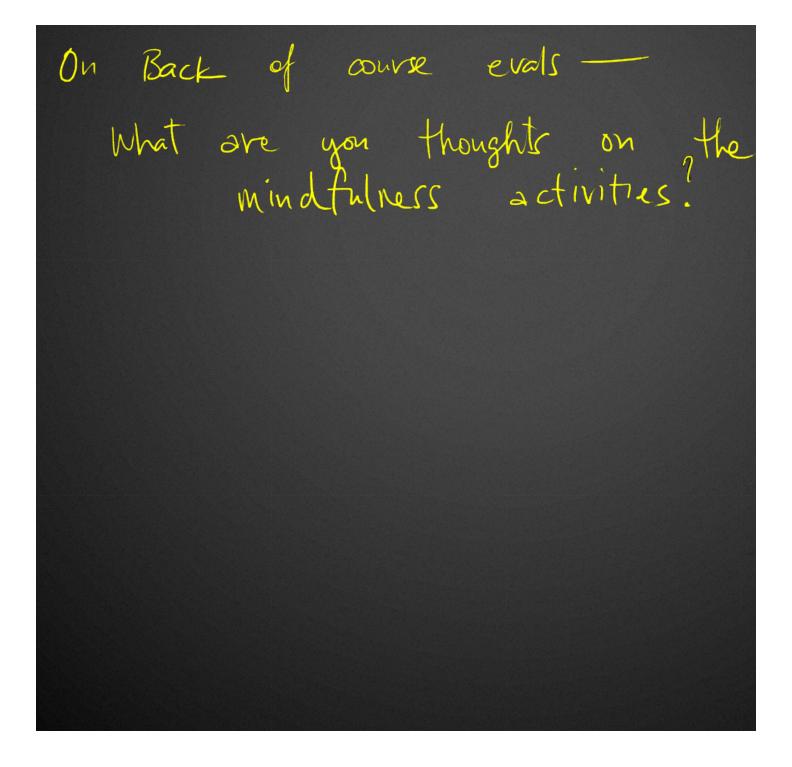
$$(f \circ h)(x) = (f \circ h)$$

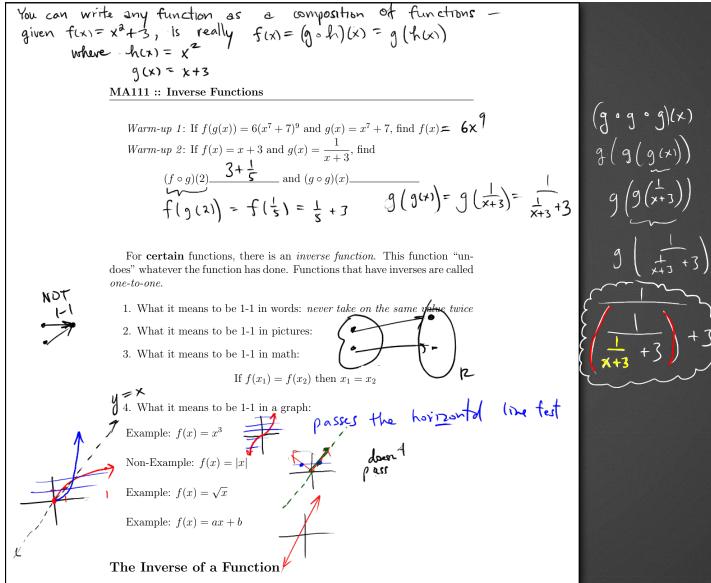
Application: Imagine x is the retail price of a iPhone, you have a \$50 coupon from Apple and RadioShack offers a 20% discount on all phones. Give functions that model the purchase price of the iPhone after each of the discounts, as well as if both discounts are allowed.





If f(x) is the cost of buying x items, What's the interpretation of f'(x)?

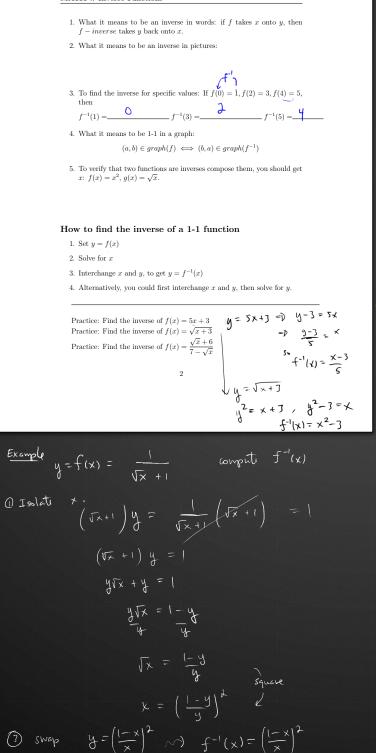


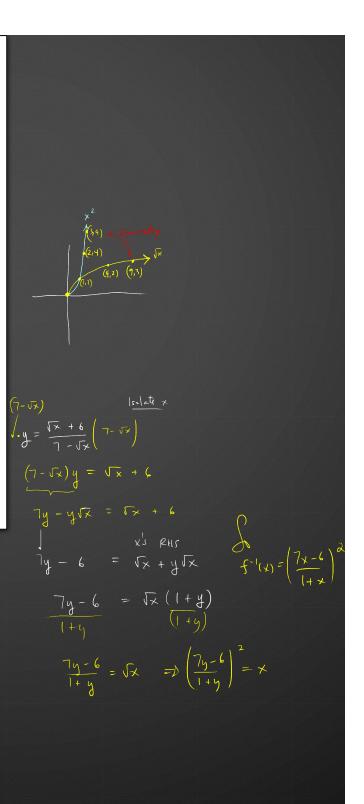


If f is a 1-1 function with domain A and range B, then its *inverse function* f^{-1} has domain B and range A and s defined by

$$f^{-1}(y) = x \iff f(x) = y$$

1





Suppose f(x) gives the cost of buying X items. What does F-'(x) represent?

variation, proportionality.

t eyes prop. to # people # toes prop to # people Area prop to square of length of square varies of cube of legt Volume of bon

square of.

sq. rost f.

$$e = 3p \qquad (\text{ scample of direct} \\ \text{Variation} \\ \text{direct} \\ \text{$$

varnes directly with × & with the square of w. Ex ¥ M= k.X.W2 $\begin{array}{cccc} \overrightarrow{it} & w = 1 & , & x = 10 & , & y = 5 \\ \end{array}$ $\begin{array}{cccc} v & b a t & is & y & w b a \\ \hline & \chi = 3 & , & w = 4? \end{array}$ 8 $5 = k \cdot |0 \cdot |^2 = D \cdot k = 1/2 \implies update:$ $y = \frac{1}{2} \times .W^{2}$ $y = \frac{1}{2}(3) \cdot 4^{2} = ($ 24

How does the graph of $-(x-3)^{2}$ to right graph of Compare y = Ly negative glips the group upside (reflection across X-AXIS $y = (x + 3)^2$ graph of Ex, left transtation E1. Compare 4=10.X y= [x] y = |x| $T y = \frac{1}{5} |x|$ 2 vertical stretch