Solving Equations: $1.1,1.2$ Today GOAL:
Linear: $5 x+1=17 \quad$ Solve for x / Isolate x

$$
\begin{aligned}
& \frac{5 x}{5}=\frac{16}{5} \\
& x=\frac{16}{5} .
\end{aligned}
$$

Now check:

$$
5\left(\frac{16}{5}\right)+1=16+1=17
$$

LINEAR TYPE:
cross multiply

$$
\frac{3}{3} \frac{1}{x}+\frac{2}{3 x}=4
$$

$$
\frac{3}{3 x}+\frac{2}{3 x}=\frac{5}{3 x}=\frac{4}{1} \xrightarrow{\text { gives }} \frac{3 x \cdot 4=5.1}{12 x=5}
$$

check:

$$
x=5 / 12
$$

$$
\begin{aligned}
& \frac{1}{(5 / 12)}+\frac{2}{3(5 / 12)\} 15 / 12}= \\
& 3 / 3 / 5+2 / 1 \cdot 12 / 15=36 / 15+24 / 15=60 / 15=4
\end{aligned}
$$

Next, we use linear equations to model real-world questions.
(Ex)
One number is 3 times another number. The sum of the numbers is 54 . What are the two numbers?

$$
\begin{aligned}
& n=3 x . \\
& 40.5+13.5=54 .
\end{aligned}
$$

$$
\begin{aligned}
& n+x=54 \\
& \uparrow \\
& 3 x+x=54 \\
& 4 x=5.4 \\
& x=13.5 \\
& \Rightarrow \quad n=3(13.5) \\
&=40,5
\end{aligned}
$$

Practice:
(1) Solve ! Check

$$
\left.\begin{array}{c|c}
5 x+7=3 \\
-7 & \text { check: } 5(-4 / 5)+7 \\
\hline 5 x=-4 \\
x=-4 / 5
\end{array} \right\rvert\, \begin{gathered}
\\
=-4+7=3
\end{gathered}
$$

(2) $\frac{6 \cdot 4}{6 \cdot x}+\frac{5}{6 x}=7$

$$
6 x \cdot 7=29
$$

$$
\frac{24}{6 x}+\frac{5}{6 x}=\frac{29}{6 x}=7
$$

$$
x=\frac{29}{42}
$$

(3) n is 2 more than 5 times m. The sum of the two numbers is 62 . Find n and m.

$$
\begin{aligned}
n=2+5 m, \quad n+m & =62 \\
(2+5 m) & +m=62 \\
2+6 m & =62 \\
6 m & =60 \quad 1 \quad n=52 . \\
m & =10 \quad \& \quad
\end{aligned}
$$

MORE MODELING-

$$
\text { MQT } \longrightarrow \mathrm{AL} \text {. }
$$

Dirk $\longrightarrow 45^{\circ} \mathrm{L}$, spent 20 hours in AL. The drive howe@ $40 \mathrm{~m} / \mathrm{h}$. Total trip tim is 50 hours.
What is the distance for MQT to our
well use $D=R \cdot T . \Rightarrow D / R=T$ destination?

Also use: Total Tim $=$ Driving + Stationary

30

$$
\left\{\begin{array}{c}
\text { we found } \\
\text { this }
\end{array}\right\}
$$

11

$$
\begin{aligned}
& \begin{array}{c}
\text { DRIVING }
\end{array}=\binom{\text { MOT } \rightarrow \text { AL }}{\text { TIME }}+\binom{\text { Return }}{\text { TIMe }} \\
& 30=\frac{40}{40} \frac{D}{45}+\frac{45 D}{4540}
\end{aligned}
$$

solve this for D.
time it took to get to Al.

$$
\begin{aligned}
& 30=\frac{40 D+45 D}{(40)(45)}=\frac{95 D}{(40)(45)} \\
& \frac{(30)(40)(45)}{85}=\cdot D=635
\end{aligned}
$$

Rectangular Gordon Fence:
I've got 160 feet of fence. Make a garden, using all the fencing so that
$3 x$
$5 x$ ix pretty rectangle has golden ratio
sides."

$$
\frac{l}{w}=\frac{5}{3} \quad \text { (postcards }
$$

$$
\frac{5 y}{3 x}=\frac{5}{3}
$$

$$
\begin{aligned}
2(3 x)+2(5 x)=160 & \text { (Perinetor) } \\
6 x+10 x=16 x=160 \quad & x=10 . \\
& \Rightarrow \begin{array}{l}
\text { length }=50 \\
\text { width }=30 .
\end{array}
\end{aligned}
$$

Find the width of the rectangle if.
ω

Area
lin

$$
\sqrt{\omega^{2}}=\frac{100}{1.8}=\sqrt{55.5}
$$

$$
w=\sqrt{55.5}= \pm 7.5
$$

$$
\begin{aligned}
& (1.8 w) w=100 \\
& =\frac{1.8 w^{2}}{1.8}=\frac{100}{1.8}
\end{aligned}
$$

Linear Equate:

God: Isolate x. (Solve for x)

$$
\begin{gathered}
4 x+7=12 \\
-7=-7 \\
\hline 4 x=5 \\
x=5 / 4
\end{gathered}
$$

Now check:

$$
\underbrace{4(5 / 4)}_{5+7}+12
$$

Ex. Solve the equeti

$$
\begin{aligned}
& 4 x-12=7 x+5 \\
&-4 x \\
&-4 x=3 x+5 \\
& \frac{-5}{-17}-5 x \\
&-\frac{17}{3}=x
\end{aligned}
$$

check:

$$
\begin{aligned}
& 4\left(-\frac{17}{3}\right)-12=7\left(-\frac{17}{3}\right)+5 \\
& \frac{-68}{3}-\frac{12 \frac{3}{3}}{=}=\frac{-119}{3}+5 \cdot \frac{3}{3} \\
& -\frac{68}{3}-\frac{36}{3} \\
& =\frac{-119+15}{3} \\
& =\frac{104}{3}
\end{aligned}=\frac{-104}{3}
$$

Ex

$$
\begin{gathered}
\underbrace{\frac{3}{3 x} \frac{3}{x}+\frac{2}{3 x}}=4 \\
\frac{5}{3 x}=\frac{4}{1}
\end{gathered}
$$

cross.
mut.
check:

$$
\begin{aligned}
& \frac{1}{(5 / 12)}+\frac{2}{3(5 / 12)}=4 \\
& \frac{12}{5}+\frac{2}{15 / 12} \cdot \frac{12}{15}=4 \\
& \frac{3}{3} \frac{12}{5}+\frac{24}{15}=\frac{36+24}{15}=\frac{60}{15}=4
\end{aligned}
$$

word problem:
one number is 4 times another. Their sum is 86 . What are the numbers?

$$
n=4 \cdot x \quad n+x=86
$$

substitut

$$
4 x+x=86
$$

$$
\frac{344}{5}+\frac{86}{5} \div 86
$$

$$
\frac{430}{5}=86
$$

$$
\begin{aligned}
5 x & =86 \\
x & =171 / 5 \\
n=4 x & =4\left(\frac{86}{5}\right) \\
& =\frac{344}{5}
\end{aligned}
$$

$$
=D \quad n=4 x=4\left(\frac{86}{5}\right)
$$

Ex: One number is 2 more than 5 times another. Their sum is 100 . What are the numbers?

$$
n=2+\underbrace{+5}
$$

$$
n+m=100
$$

$\sin 6 \quad m=\frac{98}{6}$
\uparrow
replace this with $2+$
$(2+5 m)+m=100$

$$
\begin{aligned}
n & =2+5\left(\frac{98}{6}\right) \\
& =2+\frac{490}{6} \\
& =\frac{12}{6}+\frac{490}{6}=\frac{502}{6}
\end{aligned}
$$

$$
2+6 m=100
$$

$$
\text { Fid: } \frac{502}{6}+\frac{98}{6}=\frac{600}{6}=\ldots 100
$$

Ex: Suppose your 3 grades on your exams were: 82, 91, 73. What do you need to make on your th exam to earn an exam average of 80 ?

$$
\begin{array}{r}
\frac{82+91+73+x}{4}=80 \\
246+x=4.80=320 \\
x=320-246=74
\end{array}
$$

$$
d=r \cdot t
$$

cyclist A: travels a distance d at a speed r.
$d=2 r \quad$ The time it takes this cyclist to meet the offer

$$
\text { is } \quad 2=\frac{d}{r} \quad\left(\begin{array}{ll}
\text { bl } & d=r \\
1 & t=2
\end{array}\right) .
$$

Cyclist B : travels a distance $36-d$
(2)

$$
36=d+(36-d) \quad 2=\frac{36-d d}{2 r}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { cross } \\
\text { multi, }
\end{array} \quad\left\{2=\frac{36-2 n}{2 r}\right. \\
& 2 \cdot 2 r=36-2 r \\
& 4 r=36-2 r \\
& 6 r=36 \Rightarrow r=6
\end{aligned}
$$

Faster speed $\partial r=12$
want, Ratio $\frac{l}{\omega}=1.6 \quad l=1.6 \mathrm{w}$
have: 200 foot of fencing
$\frac{u x}{}$ to all the fencing
Start: whose rate $\frac{l}{w}$ is 1.6 .
let $w=$ width, $l=$ length

$$
\begin{aligned}
& \text { If we use all fencing then } \\
& 200=2 \omega+2 l=2 \omega+\overbrace{2(1.6 \omega)}^{3,2 w} \\
& =5.2 \omega \\
& l=1.6(30.4)=61.4 \\
& 1.6 \mathrm{w}=200 \mathrm{w} \\
& 38.4=\frac{200}{5.2}=w
\end{aligned}
$$

