(45) $\frac{x}{x-2}>1$

1. Gut (0) on RHS

2. Set num $=0$, den $=0$,
(F)

test $x=0$

$$
\begin{array}{ll}
\frac{2}{-2}>0 \text { FALSE } \quad \begin{array}{l}
x=3 \\
\frac{2}{3-2}=\frac{2}{1}
\end{array}>0
\end{array}
$$

$$
\Rightarrow \quad(2, \infty)
$$

1.7 .8

$$
\left.\begin{array}{r}
4|x+1|-2<8 \\
+2+2 \\
\hline 4|x+1|<10
\end{array}\right\} \begin{aligned}
& -10<4(x+1)<10 \\
& \left(\frac{-2}{2}-\frac{5}{2}<x+1<\frac{10}{4}\right. \\
& \left.-\frac{7}{2}<x\right)<\frac{5}{2}<\frac{3}{2} \\
& \left(-\frac{7}{2}, \frac{3}{2}\right)
\end{aligned}
$$

1.6.1

1. W/O on RH\{ now search for criticcel pts, factor LHS

$$
-x^{2}+5 x \geqslant 0 \rightarrow-x^{2}+5 x
$$

$$
\begin{equation*}
\{-x(x-5) \geqslant 0 \tag{I}
\end{equation*}
$$

$$
\begin{gathered}
\text { is st each } \\
\text { to o }
\end{gathered}
$$

$$
2-x
$$

1. © ou RHS v

$$
x-7 \geqslant 0
$$

2. Find those C.R
3. By inspectoon C.P.'s are $x=2$
set $2-x=0$ \& $x=7$

1.6 .1

$$
\begin{aligned}
& x-1<\underbrace{3(-6 x-5)}-1 \\
& x-1<-18 x-15-1 \\
& x-1<-18 x-16 \\
& +1 \\
& x<-1 \\
& +19 x+\frac{18 x}{19}+1<\frac{-15}{19} \\
& \frac{19 x}{19}<\frac{-15}{19}
\end{aligned}
$$

1.7.3 Waßurk -
solve

$$
7 x-35=14 \Rightarrow 7 x=49
$$

$$
\begin{aligned}
& |7 x-35|=14 \\
& 1.6 .1 \\
& -x^{2}+5 x \geqslant 0 \\
& x(-x+5) \geqslant 0 \\
& x=0 \\
& x+5=0 \\
& x=5
\end{aligned}
$$

and

$$
7 x-35=-14
$$

$$
+35+35
$$

$$
7 x=21
$$

$$
x=3
$$

- Inequality
- \#1 got 0 on RHS

$$
-1^{2}+5=4 \geqslant 0
$$

$$
\text { Hz factor set each }=0, \quad \begin{aligned}
& x=c \\
& -36+3
\end{aligned}
$$

\#t find critical points

since this one is we check the endpoint $x=0 \Rightarrow$ true
$x=5 \Rightarrow$ the

use subtraction
(1) gat (1) in RIHS
(2) Jato
uts s

$$
\underbrace{x^{4}-81 x^{2}>0}_{x^{2}\left(x^{2}-81\right)>0}
$$

$$
\text { set }=0
$$

$x^{2}=0 \Rightarrow x=0$ is a critical point

$$
\begin{equation*}
x^{2}-81=0 \Rightarrow \sqrt{x^{2}}=\sqrt{81} \Rightarrow x= \pm 9 \tag{I}
\end{equation*}
$$

1.6 .3.

$$
\begin{array}{l|ll}
4-x \\
x-7
\end{array} \quad \begin{array}{cc}
\text { CRITICAL } & \text { PTS } \\
x=4 & (4-x=0) \\
& x=7
\end{array}(x-7=0)
$$

check : $x=4 \Rightarrow \frac{4-4}{4-7}=\frac{0}{-3} \geqslant 0$ TRUE.
endpts
10
$x=7 \quad \frac{4-7}{1-7}=\frac{-3}{0}$ DNE. FALSE

$$
\frac{x}{x-8}>-1
$$

(\#1) \varnothing

$$
\frac{x}{x-8}+1\left(\frac{x-8}{x-8}\right)>
$$

$$
\begin{aligned}
& \text { RHS } \\
& \begin{aligned}
2 x-\theta & =0 \\
\Rightarrow x & =4 \\
x-y & =0 \\
\Rightarrow x & =y^{\text {CRFT }}
\end{aligned}
\end{aligned}
$$

sel "factors" $=0$

$$
\frac{x+(x-8)}{x-8}>0
$$

$$
\frac{2 x-8}{x-8}>0
$$

$$
(-\infty, 4) \cup(8, \infty)
$$

1.7 .1

$$
|x-2| \geqslant 6
$$

$$
|x|<-\left\lvert\, \quad \begin{array}{r}
-6 \\
+2
\end{array} \geqslant x-2 \geqslant 6\right.
$$ from (Q)

$$
8 \leq x \leq-4
$$

No overlap \Rightarrow unlor
cleck: (-5): $|-5-2|=7 \geqslant 6$
(9) $:|9-2|=7 \geqslant 6$

$$
\begin{aligned}
|x+1| & <1 \\
-1 & <x+1<1 \\
-1 & -1 \\
-2<x & <0
\end{aligned}
$$

Parallel: : same slope

negative-recipwal. slope

Ex. Find the eq'u of line perpendialer to $y=3 x+1$, which passes the $(0,7)$.

$$
\begin{aligned}
& y=m x+b, \text { know } m=-\frac{1}{3} \\
& y=-\frac{1}{3} x+b \Rightarrow y=-\frac{1}{3} x+7 \\
& 7=-\frac{1}{3}(0)+b \Rightarrow b=7
\end{aligned}
$$

Ex. The eq'n of line thru $(1,2),(-4,3)$ also goes the $(t,-1)$. What is t ?
$(-4,7) \quad(1,2) \quad$ Line: $m=\frac{3-2}{-4-1}=\frac{1}{-5}, \dot{y}-\frac{1}{2}=\frac{-1}{5}\left(x-x_{1}\right)$

$$
\text { . }(t,-1)
$$

$$
y-2=-\frac{1}{5}(x-1)
$$

If $(t,-1)$ lives on this live,

$$
y-2=\frac{-1}{3} x+\frac{1}{5}
$$ then

$$
\begin{aligned}
& \text { then }=-\frac{1}{5}(t)+\frac{11}{5} \\
&-\frac{11}{5} \\
&\left(-9 \frac{-16}{5}\right)=-\frac{11}{5}
\end{aligned}
$$

$m=5$ \& $\quad y-2=5(x-1)=5 x-5$ so $y=5 x-3$

1. Give the eq'n of the line the $(1,2)$ which is parrollel to $y=5 x+7$

$$
\begin{gathered}
m=\frac{-6-2}{5-7}=\frac{-8}{-2}=4 \text { द } y-2=4(x-7)=4 x-28 \\
\text { so } y=4 x-26
\end{gathered}
$$

2 Give the eq'n of the line the

$$
(7,2) \quad \frac{1}{2} \quad(5,-6)
$$

$m=-3$
$!_{1}(0,-4)$ is on line. f_{0}

$$
-4=-3(0)+6
$$ " $x(y)$

$$
y=-3 x+b \quad y=-3 x-4
$$

$$
-4=6
$$

3. Give the eq'n of the line with slope $-3 \sum_{i}^{1}$ whose y-intercept is -4 .
4. Compute the perimeter of the triangle $(-5,4)$ whose vertices are $(-5,-2),(-5,4),(3,1)$

$$
\begin{gathered}
P=d_{11}+d_{2}+d_{3} \quad d_{4}=\text { weigh: } \\
\sqrt{(13-(-5))^{2}+(1-4)^{2}} \\
\quad=\sqrt{64+9}=\sqrt{73}
\end{gathered}
$$

5. Compute the area of this triangle.

CH. 2 lines : the coordinate plane.

this examples $=\sqrt{(2-(-3))^{2}+(1-(-2))^{2}}$

$$
=\sqrt{25+9}
$$

$$
=\sqrt{34} \text { inter } 5<\sqrt{34}<6
$$

LINES slope

$$
\frac{1}{\sqrt{25}<\sqrt{34}<\sqrt{36}}
$$

$$
\begin{aligned}
& y=m x+b \\
& y-y_{1}=m\left(x-x_{1}\right) \\
& \frac{y-y_{1}}{x-x_{1}}=m \\
& A x+B y+c=B
\end{aligned}
$$

slope.

$$
\frac{y-y_{1}}{x-x_{1}}=m \quad \rightarrow \text { slope formula }
$$

slope -
$-A x$

$$
\frac{B y}{B}=\frac{-C x-C-C}{B} \Rightarrow y=\left(-\frac{A}{B}\right) x-\left(\frac{C}{B}\right)
$$

Ex. Give the equation of the lire
them $(1,2)!(3,-4)$.

general eq'n of a line.
$=$ constants

$$
A_{1} B, C=\text { constants }
$$

$$
\begin{aligned}
& \text { singe: } m=\frac{\text { rise }}{\text { run }}-\frac{2-(-4)}{1-3}=\frac{6}{-2} \\
&=-3 \\
& y=-3 x+6 \text { know }(1,2) \\
& 2=-3(1)+b \text { is on } \\
& 5=6 \text { so } \begin{array}{l}
\text { sine }
\end{array} \\
& \begin{aligned}
x & =1 \\
y & =2
\end{aligned}
\end{aligned}
$$ $x=1$

satisfies eq.

Parallel
same slope
slope $=n$ slope $=m$
$n=-\frac{1}{m}$

Ex. Find the equation of lime thru $(4,2)$ perpendicular to the line

$$
y=6 x+7
$$

$m=-\frac{1}{6}$ and know $(4,2)$ satisfies

$$
\begin{aligned}
& \begin{array}{r}
y=-\frac{1}{6} x+b^{ \pm} \\
2
\end{array} \\
& y=-\frac{1}{6} x+\frac{8}{3} \\
& 2=-\frac{1}{6}(4)+b \\
& 2=-\frac{2}{3}+6 \\
& \frac{8}{3}=\frac{2}{3}+2=b
\end{aligned}
$$

1. Find the equation of the line the (-3.5) with y-intercept

$$
\Rightarrow y=m x+17
$$

$$
\begin{aligned}
d=\frac{17-5}{0-3}= & \frac{12}{3}=4 \\
y & =4 x+17
\end{aligned}
$$

2. Find the equation of the line the $(-2,1) \sum_{i}^{1}(5,-4)$

$$
\begin{aligned}
& m=\frac{-4-1}{5--2}=\frac{\operatorname{diff}(y)}{\operatorname{diff}(x)}=\frac{-5}{7} \quad y=\frac{-5}{7} x-\frac{3}{7} \\
& y-y_{1}=\frac{-5}{7}\left(x-x_{1}\right)
\end{aligned}
$$

$$
\text { So } \quad \begin{aligned}
& -1 \\
& 1
\end{aligned}=\frac{-5}{7}(x+2)=\frac{-5}{7} x-\frac{10}{7}+\frac{7}{7}
$$

3 Find the equation of the line parallel to $y=x$ which contains $(3,12)$

$$
y=1 x+0
$$

$$
m=1
$$

$$
\begin{aligned}
y-12 & =1(x-3) \\
& =x-3 \\
y & =x+9
\end{aligned}
$$

4. Find the perimeter of the triangle whose vertices are $(-5,4) \cdot(3,1)(-5,-2)$

EQUATION OF THE UNIT CIRCE.
center: $(0,0)$

radius: 1

$$
\left(\frac{\sqrt{2}}{7}\right)^{2}+\left(\frac{\sqrt{2}}{2}\right)^{2}=\frac{2}{4}+\frac{2}{4}=1
$$

MORE GENERALLY:
center: (h, k)
radius: r

$$
\begin{aligned}
(x-h)^{2}+(y-k)^{2} & =r^{2} \\
(x+3)^{2}+(y-2)^{2} & =9
\end{aligned}
$$

center: $(-3,2)$
radius: 3

Question: What's the egn of circle whose $(5,8)$ diameter has endpoints $(1,2),(5,8)$?

midpoint $r=\frac{d}{2}$ where $d=\sqrt{(5-1)^{2}+(8-2)^{2}}$
formula
formula
$\left(\frac{\text { add } x^{\prime} s}{2}, \frac{\text { add } y^{\prime} s}{2}\right)$

$$
=\sqrt{16+36}=\sqrt{52}
$$

$$
\left(\frac{5+1}{2}, \frac{8+2}{2}\right)=(3,5)=\text { midpoint } ~=~ c e n t e r . ~
$$

our eqn: $(x-3)^{2}+(y-5)^{2}=13$

Another Circle Problem: (heavy algebra) $(x-h)^{2}+(y-k)^{2}=r^{2}$ This equation determines a circle.
(the set of (x, y) that satisfy ign lies on a circle)

$$
x^{2}+4 x+y^{2}+8 y-61=0
$$

what is the center \& radius?

$$
\left(\frac{4}{2}\right)^{2}=4 \frac{x^{2}+\left(\frac{8}{2}\right)^{2}=16}{\underbrace{(x-(-2))}_{(x+2)^{2}}+\underbrace{(y+4)^{2}}}=6+y^{2}+(8) y+16=61+4+16
$$

center: $(-2,-4)$, radius: 9

Application (Linear Functions) ... (Lines).
Assume: snompack @ MQTMTN at noon is 30".
Snow stow claps $a^{\prime \prime}$ per hour for 8 hours.
GOAL: Produce a mattemitid (formula) model that describes / gives the snow depth t hours after noon.
t : independent variable (time)
($\left(\right.$) $\left.\begin{array}{c|c}\text { time } & d \text { depth }) \\ 0 & 30 \\ 1 & 32 \\ 2 & 34 \\ \vdots & \vdots\end{array}\right\}$ ext ran

Quester: How much snow is there

$$
\text { so } d=2(3.75)+30=37.5^{\prime}
$$

Another Applicator (Inequalities)
Assume we need to rent a widget.
$\underline{\text { Option \#1 : costs } \frac{\$_{40} \frac{40 x}{\text { per hour }} \text { with }}{a}{ }^{5} 50 \text { serve foe }}$

Option \#2: cost \$30 per hour with

$$
\begin{aligned}
& \text { a } \$ 150 \text { service } \\
& \text { far. }
\end{aligned}
$$

When does option \# 2 become cheaper?

$$
\begin{aligned}
40 x+50 & >\underbrace{30 x+150}_{ \pm 1} \\
10 x & >100
\end{aligned}
$$

Answer. When the \# of hours is >10 A 2 is otter.

Practice:
what's the center $\frac{1}{\text { a radius of this circle. }}$

$$
\begin{array}{r}
\left(-\frac{16}{2}\right)^{2}=64 x^{2}-16 x+y^{2}+10 y-69=0 \\
x-16 x+64+y^{2}+10 y+25=69 \\
(x-8)^{2}+(y+5)^{2}=158 \text { center: }(8,-5)= \pm 25 \\
=0 \text { radius }=\sqrt{158}
\end{array}
$$

Practice: Give an equation of the perpendicular bisector to the segment $\overline{A B}$ where

$$
A=(1,-3) \quad, \quad B=(7,5)
$$

Absolute Vane Inequalities -
AND \leftrightarrow intersection

$$
|x|<7
$$

x is less than
distance 7 from 0
equivalently $(-7,7)$
sols all $x>-7$ and $x<7$

$$
\text { equivalency }(-\infty,-7) \cup(7, \infty)
$$

OR \leftrightarrow union

$$
|x|>7
$$

x is greater than distance from (1)

Today Only: You can recover all points fro Quiz 2. : Turn in a new sheet witt all problems Name: we work in class.
Quiz 2 :: Math 111 :: October 2, 2015

1. One positive number is one-fifth of $\overbrace{\text { another number. The difference between the two numbers }}$ is 92 . Find the numbers.

$$
\begin{aligned}
& m-\frac{\downarrow}{n}=92 \\
& m-\frac{1}{5} m=92 \\
& m\left(1-\frac{1}{5}\right)=92 \\
& m(4 / 5)=92
\end{aligned}
$$

$$
\nabla m=92.5 / 4
$$

(b) Two numbers differ by three. The sum of their squares is 65 . Use algebra to find the
numbers.

$$
\begin{aligned}
a-b & =3 \\
a & =3+b
\end{aligned}
$$

$$
D 2 b^{2}+6 b-56=0
$$

$$
(3+b)^{2}+b^{2}=65
$$

$$
\begin{array}{ll}
9+6 b+2 b^{2}= & 65 \\
-65 & -65
\end{array}
$$

$$
\begin{aligned}
& b=\frac{-6 \pm \sqrt{36-4 \cdot 2 \cdot(56)}}{4} \\
&=4 \text { or }-7 \\
& \text { so } b=4
\end{aligned}
$$

$$
\begin{aligned}
\pi r^{2} & =A=100 \pi t \\
r & =10
\end{aligned}
$$

3. An open box is to be made from a $8^{\prime} \times 4^{\prime}$ sheet of aluminum by removing square sections from the corners and folding up the sides.
(a) Using x as the length of the side of the square removed, What is the formula for the volume of the box.
(b) What is the area of the base of the box?

$$
\begin{array}{lll}
V=l \cdot w \cdot h, \text { in our box } & h=x \\
V=(4-2 x)(8-2 x)(x) & \begin{array}{l}
\text { pkt } \\
\text { stop }
\end{array} & l=8-2 x \\
l & =4-2 x
\end{array}
$$

$$
A=(4-2 x)(8-2 x)
$$

4. Find all real solutions to:
(a)

$$
\left.\begin{array}{ll}
\pi x^{2}-1.5 x-10=\varnothing \\
a x^{2}+b x+c=0
\end{array} \quad x=1.5 \pm \sqrt{(1.5)^{2}-4(\pi)(-10)}\right) 2 \pi
$$

where $a=\pi$

$$
b=-1.5
$$

$$
c=-10
$$

(b)
$x^{2}-8 x-20=0$ by completing the square

$$
\begin{gathered}
\underbrace{x^{2}-8 x+16}=20+16 \\
x-4)^{2}=36 \\
x=4 \pm 6 \\
x=10
\end{gathered}
$$

(c)

$$
x-5 \sqrt{x}-14=0 \text { by factoring }
$$

either let

$$
\begin{aligned}
& w=\sqrt{x} \\
& w^{2}=x .
\end{aligned}
$$

and so substituting

$$
\begin{aligned}
& w^{2}-5 w-14=0 \\
& (w-7)(w+2)=0 \\
& \underbrace{\sqrt{x}=w=-2}_{\text {no sol for } x}
\end{aligned}
$$

(or) $(\sqrt{x}-7)(\sqrt{x}+2)=0$
-1 cant go here. \Rightarrow No sol's
(d)

$$
\begin{array}{r}
\frac{x}{x-1}+\frac{1}{x+1}+\frac{2}{x^{2}-1}=0=\frac{x+1}{x-1} \\
\frac{x^{2}+x+x-1+2}{(x-1)(x+1)}=\frac{x^{2}+2 x+1}{(x-1)(x+1)}=\frac{(x+1)^{2}}{(x-1)(x+1)} \\
\\
\begin{array}{l}
\frac{x+1}{x-1}=0 \\
\text { has solutions } \\
x+1=0 \\
x=-1
\end{array}
\end{array}
$$

(e)

$$
\sqrt{x-2}=x+1
$$

\downarrow square both sides

$$
\begin{align*}
x-2=(x+1)^{2}=x^{2} & +2 x+1 \\
-(x-2) & -(x-2) \tag{red}
\end{align*}
$$

$0=x^{2}+x+3 \rightarrow$ has no sol's.

$$
\begin{aligned}
& x= \frac{-1 \pm \sqrt{1-4 \cdot 2}}{2} \\
&= \frac{-1 \pm \sqrt{-11}}{2} \\
&(\operatorname{not} \text { a red } \#)
\end{aligned}
$$

5. Solve the inequality
(a)

(b)

$$
\begin{gathered}
\frac{1=x}{1+x x} \leq 0 \\
-3=\frac{3}{-1}=\frac{1-(-2)}{1-2} \\
(-\infty,-1) \cup[1, \infty)
\end{gathered}
$$

$$
\begin{aligned}
& \text { (d) } \\
& \frac{1-x}{1+x} \text { wn } \quad x\left(\frac{1+x}{1+x}\right) \leq 0 \\
& \frac{1-x-x-x^{2}}{1+x} \leq 0 \\
& \text { CP's } \frac{1-2 x-x^{2}}{1+x} \leq 0 \\
& 1-2 x-x^{2}=0 \Rightarrow x^{2}+2 x-1=0 \quad(\text { mult. by }-1) \\
& \text { doesu't factor } \\
& 1+x=0 \\
& x=-1 \\
& x=\frac{-2 \pm \sqrt{4-4(-1)}}{2} \quad c^{\prime} \text { s } \\
& 5=\frac{-2 \pm \sqrt{8}}{2}=\frac{-2 \pm 2 \sqrt{2}}{2}=-1 \pm \sqrt{2}
\end{aligned}
$$

(e)

$$
x^{2}>-10 x+50
$$

(f)

$$
|2 x-16|<12
$$

(g)

$$
\left|\frac{9-2 x}{-4}\right|<10
$$

Name:
Quiz 2 :: Math 111 :: October 2, 2015

1. One positive number is one-fifth of another number. The difference between the two numbers is 92 . Find the numbers.

$$
\begin{array}{ll}
n=\frac{1}{5} \cdot m, & m-n=92 \\
m-\frac{1}{5} m=92 \\
m=23=\frac{1}{5} \cdot 115 & m(1-1 / 5)=92 \\
5 / m(4 / 5)=92.5 / 4 \quad m=115
\end{array}
$$

(b) Two numbers differ by three. The sum of their squares is 65 . Use algebra to find the numbers.

$$
\begin{gathered}
n-m=3 \\
n=3+m
\end{gathered}
$$

-65

$$
9+6 m+2 m^{2}=65
$$

$$
2 m^{2}+6 m-56=0
$$

2. A circular Zen-garden has area $100 \pi \mathrm{ft}^{2}$. What is the circumference of the garden?

3. An open box is to be made from a $8^{\prime} \times 4^{\prime}$ sheet of aluminum by removing square sections from the corners and folding up the sides.
(a) Using x as the length of the side of the square removed, What is the formula for the volume of the box.
(b) What is the area of the base of the box? $\quad V=l \cdot w \cdot h=x(8-2+)(4-2 x)$

4. Find all real solutions to:
(a)

$$
a x^{2}+b x+c=0
$$

$$
\pi x^{2}-1.5 x-10=0
$$

where

$$
\begin{aligned}
& a=\pi \\
& b=-1.5 \\
& c=-10
\end{aligned}
$$

$$
x=\frac{1.5 \pm \sqrt{(-1.5)^{2}-4(\pi)(-10)}}{2 \pi}
$$

(b)

$$
\left(-\frac{8}{2}\right)^{2}=16
$$

$x^{2}-8 x-20=0$ by completing the square

$$
\begin{aligned}
x^{x^{2}-8 x+16} & =20+16 \\
\underbrace{(x-4)^{2}} & =836
\end{aligned}
$$

$$
x-4= \pm 6
$$

$$
x=4 \pm 6
$$

(c)

(x) $5 \sqrt{x}-14=0$ by factoring $w=\frac{\sqrt{x}, w^{2}}{}=x$

$$
\begin{array}{ccc}
(\sqrt{x}-7)(\sqrt{x}+2)=0 & w^{2}-5 w-14=0 \\
\sqrt{x}-7=0 & \text { or } & \sqrt{x}+2=0 \\
\sqrt{x}=7 & \sqrt{x}=-2(w+2)=0 \\
x=49 & w=7=\sqrt{x} \\
x+8 & \text { or } \\
x+20 \\
w+2=0 \\
w=-2 \\
1 & \sqrt{x} \otimes
\end{array}
$$

lgsol's

$$
\frac{\left(x^{2}+x\right)+(x-1)+(2)}{(x-1)(x+1)}=0
$$ is possile to phy int. origind.

(e)

$$
\begin{aligned}
& \begin{array}{l}
\sqrt{x-2}=x+1 \\
\text { red } \\
\text { nols } \\
\hline
\end{array}
\end{aligned}
$$

Squave foth sids

$$
\begin{gathered}
x-2=(x+1)^{2}=x^{2}+2 x+1 \\
-x+2+2 \\
0=x^{2}+x+3 \\
x=-\frac{1 \pm \sqrt{1-411.3}}{2}=\frac{-1 \pm \sqrt{-11}}{2} \text { rot red } \#
\end{gathered}
$$

5. Solve the inequality
(a)

(b)

$$
2 x+1<5 x+7
$$

$$
\begin{gathered}
2 x+1<5 x+7 \\
-2 x \quad-2 人 .
\end{gathered}
$$

$$
\begin{array}{rr}
1 & <3 x+7 \\
-7 & -7
\end{array}
$$

$$
-\frac{6}{3}<\frac{3 x}{3} \Rightarrow
$$

non-linear 1. Φ on RHS. inequd.
2. Find C.P.'s

Fact
-1 is not in $(-\infty,-1)$
(d)

$$
\begin{aligned}
& \frac{1-x}{1+x} \leq 0 \quad \underbrace{\frac{-x-\boldsymbol{x}^{2}}{1+x}} \\
& \frac{1-x}{1+x}-x\left(\frac{1+x}{1+x}\right) \\
& \leq 0 \\
& \frac{1-x-x-x^{2}}{1+x} \leq 0 \\
& \frac{1-2 x-x^{2}}{1+x} \leq 0
\end{aligned}
$$

$$
(-1) 0=1-2 x-x^{2}(-1) \Rightarrow
$$

$$
\begin{aligned}
& 0=x^{2}+2 x-1 \\
& \text { quad for }
\end{aligned}
$$

den: $1+x=0$

$$
x=-1 \pm \sqrt{2}
$$

$$
x=-1
$$

5

$$
\begin{aligned}
& \text { (e) } \\
& x^{2}>-10 x+50 \\
& |2 x-16|>12 \\
& \begin{array}{cc}
12 \\
-12 & 12
\end{array} \\
& 2 x-16>12 \text { OR } 2 x-16<-12 \\
& 2 x>28 \quad 2 x<4 \\
& x>14 \xrightarrow{\text { OR }} \rightarrow \\
& 2 x-16<12 \quad A N D \quad 2 x-16>-12 \\
& 2 x<28 \quad 2 x>4 \\
& x<14 \quad \text { AND } \quad x>2 \\
& \text { both must be } \\
& \text { the a same time. } \\
& (2,14) \\
& \text { (g) } \\
& \left|\frac{9-2 x}{-4}\right|<10 \quad(31 / 2,44 / 2) \\
& \frac{\left|q^{2}-2 x\right|}{4}<10 \\
& \frac{49}{2}>x>\frac{31}{2} \\
& |9-2 x|<40 \\
& \begin{array}{ll}
-40<9-2 x<40 \\
-9 & \Rightarrow
\end{array} \quad \begin{array}{rrr}
-49 & -2 x & -2 \\
-2 & -2 & -2
\end{array}
\end{aligned}
$$

