For full credit, show all your work!

1. Find all the missing angles and lengths.

2. If $\cos t = -3/5$ and the terminal point of t is in quadrant III, find

$\sin t$	$\tan t$	$\sec t$	$\cot t$	$\csc t$

3. For the angles given below give their co-terminal angles, reference angles and terminal points.

Radian Measure	Co-Terminal Angle in $[0, 2\pi)$	Reference Angle	Terminal Point
$\theta = \frac{22\pi}{3}$			
$\theta = \frac{35\pi}{6}$			

4. Sketch a graph, determine the domain, determine at least two zeros, and determine the amplitude, period and phase shift (where appropriate)

5	Answer	the	f_{Ω}	owin	σ.
Ο.	Answei	une	1011	owm	g.

(a)
$$g(x) = \cos(x - \pi)$$

Find at least four zeros of g(x) _____

(b)
$$f(x) = \tan x$$

the domain of f(x) is _____

(c)
$$h(x) = 4\cos(3\pi x)$$

the amplitude of h(x) is _____

(d)
$$k(x) = 3\sin(4\pi x)$$

the period of k(x) is _____

(e)
$$F(x) = 3\sin(2\pi x - 3)$$

the phase shift of F(x) is _____

6. Compute the following by hand - no calculator allowed.

(a)
$$\cos\left(\frac{-17\pi}{6}\right)$$

(b)
$$\sec\left(\frac{37\pi}{3}\right)$$

(c)
$$\tan\left(\frac{13\pi}{3}\right)$$

(d)
$$\csc\left(\frac{-4\pi}{3}\right)$$

(e)
$$\sin\left(\frac{14\pi}{6}\right)$$

Fill in The Unit Circle

EmbeddedMath.com