- euclid.nmu.edu/rjoshthom/Teaching/MA15 - syllabus

Name:
Chapter P :: Real Numbers - Exponents, Radicals and Factoring :: Math 115

1. Set notation helps us communicate collections of numbers effectively. Find the indicated sets if

$$
A=\{1,3,5,7\}, B=\{2,4,6,8\} \text { and } C=\{7,8,9\}
$$

(a) $A \cup B=\operatorname{in} A$ or $B=\{1,2,3,4,5,6,7,8\}$
(b) $A \cap B=\operatorname{in} A$ and in $B=\phi \leftarrow$ empty set
(c) $B \cap C=\{8\}$
2. Find the indicated sets if such that

$$
\begin{aligned}
& \text { if } \begin{array}{l}
\text { such that } \\
A=\{x \mid x<4\} \text { and } C=\{x \mid-1<x \leq 6\}=(-1,6] \\
\mid \text { any real \# X } \\
=(-\infty, 4)
\end{array}
\end{aligned}
$$

(a) $A \cup C$
(b) $A \cap C$
3. The number line:

Graph the set $(-2,0) \cup(-1,1)$
Graph the set $[-4,6) \cap[0,8)$

PEMDAS =

4. Name the property illustrated:

$$
\begin{array}{ccc}
2 x+5=5+2 x & \text { commutative } \\
30 & & (2 x+5)+7 y=2 x+(5+7 y) \\
\hline 11 & \text { associatire } \\
3(10)=3(8+2)=3.8+3.2 & A(C+D)=A C+A D & \text { distributive } \\
\text { 5. Is this true of false? }(A+B)(C+D)=(A+B) C+(A+B) D \\
A+B=E & \prime \prime \\
E(C+D)=E C+E D &
\end{array}
$$

$$
\begin{aligned}
& \text { 6. Simplify into one power of two. } 4^{x} \cdot 2^{y}=2^{\square} \\
& 11 \\
& {\left[2^{2}\right]^{x} \cdot 2^{y}=2^{2 x} \cdot 2^{y}=2^{2 x+y}} \\
& 8.4=32 \\
& \begin{array}{l}
\text { key } \\
\text { mum. like bases } \Rightarrow \text { add exponents } \\
A^{M} \cdot A^{n}=A^{m+n} \\
\text { raise a power to a power } \\
\Rightarrow \text { multi, powers }
\end{array} \\
& \left(A^{m}\right)^{n}=A^{m-n} \\
& \begin{aligned}
\left(2^{3}\right)^{2}=2^{3} \cdot 2^{3}= & 2^{3+3} \\
& =2 \cdot 3
\end{aligned} \\
& \text { 7. Simplify }\left(2^{2}\right)^{5} \\
& 3+(-5) \\
& \text { 8. Simplify }(y+x)^{3}(y+x)^{-5} \\
& \text { 9. Simplify }\left(\frac{x y}{4}\right)^{3}\left(\frac{2 x^{2}}{4 y}\right)^{5}
\end{aligned}
$$

