MAIIS - Thursday - week

$$
\begin{aligned}
& (a-b)(b-a) \neq(a-b)(a-b) \quad \text { why } a=5, b=1 \\
& (5-1)(1-5)=(5-1)(5-1)
\end{aligned}
$$

Problem 1. (1 point) Library/FortLewis/Algebra/1-3-Equivalent-exp ressions/MCH1-1-3-08-Equivalent-expressions.pg
Determine whether the expressions are equivalent or not.

$$
\begin{aligned}
& \text { ? 1. }(a-b)^{2} \text { and } a^{2}-2 a b+b^{2} \\
& \text { ? 2. }(a-b)^{2} \text { and }(a-b)(a-b) \\
& \text { ? 3. }(a-b)^{2} \text { and }(a-b)(b-a) \\
& \text { ? 4. }(a-b)^{2} \text { and } a^{2}-b^{2} \\
& \text { ? 5. }(a-b)^{2} \text { and }(b-a)^{2}
\end{aligned}
$$

Answer(s) submitted:
\bullet
\bullet
\bullet
\bullet
\bullet
(incorrect)

Problem 2. (1 point) Library/FortLewis/Algebra/2-1-Reordering-and -regrouping/MCH1-2-1-01-06all-Reordering-and-regrouping.pg Determine whether the expressions are equivalent or not.

$$
\text { ? 1. } 2 x y \text { and }(2 x)(2 y)
$$

? 2. $5-x$ and $-x+5$
?3. $(3 x)(4 y)(2 x)$ and $24 x^{2} y$
? 4. $2 c+d$ and $c+2 d$
? 5. $x(3 x)$ and $4 x$
? 6. $(x+3)(x+4)$ and $(x+3)(4+x)$

Answer(s) submitted:

(incorrect)

Problem 3. (1 point) Library/FortLewis/Algebra/2-3-Expanding-and-factoring/MCH1-2-3-56-Expanding-and-factoring.pg
Factor the expression $10 a^{3}+32 a b^{2}$. Simplify your answer as much as possible.

$$
a\left(10 a^{2}+32 b^{2}\right)
$$

($)($ help (formulas)
Answer(s) submitted:
-
(incorrect)

Problem 4. (1 point) Library/FortLewis/Algebra/2-1-Reordering-and -regrouping/MCH1-2-1-07-10all-Reordering-and-regrouping.pg
Determine whether the equations are identities.
? 1. $3 b+2 b^{2}=5 b^{3}$
? 2. $4 h^{2}+3 h^{2}=7 h^{2}$
? 3. $2 A B^{2}+3 A^{2} B=5 A^{2} B^{2}$
? 4. $2 x^{2}+3 x^{3}=5 x^{5}$

Answer(s) submitted:
-
\bullet
\bullet
(incorrect)

Problem 5. (1 point) Library/FortLewis/Algebra/2-3-Expanding-and-factoring/MCH1-2-3-38-Expanding-and-factoring-old.pg
Factor the expression $4 n^{2}-16 n-180$. Simplify your answer as much as possible, and put the greatest common factor in the first answer box.

\bullet
(incorrect)
$=4\left(n^{2}-4 n-45\right)$

Factoring Trinomial

$$
x^{x^{2}}-7 x+12=(x-3)(x-4)
$$

leading coefficient $=1$.

$$
\begin{aligned}
5 x^{2}+7 x-6 & =5 x^{2}+10 x-3 x-6 \\
& =5 x(x+2)-3(x+2)=(x+2)(5 x-3)
\end{aligned}
$$

\uparrow
not 1 ... factor by grouping ($1($-method)
Factor By Grouping, (done on 4 terms

$$
\begin{aligned}
& x^{3}+3 x^{2}+4 x+12 \quad 5 \\
& \left(x^{3}+3 x^{2}\right)+(4 x+12) \leftarrow \text { still equivalent } \\
& \underbrace{x^{2}(\underbrace{x+3})}_{\text {the G.C.F btw two pieces }}+4(\underbrace{x+3})=(x+3)\left(x^{2}+4\right) \text { similar } \\
& =A\left(x^{2}+4\right)
\end{aligned}
$$

$$
A x^{2}+B x-C
$$

Tumult. $A C$: - 30 (in Ex.)
(2) decompose B : into factors of -30:

$$
\begin{array}{c|c}
\frac{\text { Factors } 9}{}-30 & \text { Sum } \\
\hline 1,-30 & \frac{-29}{} \\
-1,30 & 29 \\
10,-3 & 7
\end{array}
$$

Ex. $x^{3}+7 x^{2}-4 x-28$. Factor by grouping

$$
\begin{aligned}
= & C_{0}\left(x^{3}+7 x^{2}\right)-4(x+7) \\
& x^{2}(x+7)-4(x+7) \\
& (x+7)\left(x^{2}-4\right)=(x+7)(x-2)(x+2)
\end{aligned}
$$

Difference of Squares

$$
a^{2}-b^{2}=(a-b)(a+b)
$$

(Note: $a^{2}+b^{2}$ doesn't factor)

Problem 6. (1 point) Library/FortLewis/Algebra/2-3-Expanding-and-factoring/MCH1-2-3-46-Expanding-and-factoring-old.pg
Factor the expression $x^{2}+24 x+144$. Simplify your answer as much as possible.
$\left(_\right)$(\quad) help (formulas)
Answer(s) submitted:
\bullet
(incorrect)
Problem 7. (1 point) Library/FortLewis/Algebra/2-3-Expanding-and-factoring/MCH1-2-3-60-Expanding-and-factoring-old.pg
Factor the expression $(a+b)^{2}-81$. Simplify your answer as much as possible.

A
\qquad
Answer(s) submitted:
-
$B=9$
\bullet
$A^{2}-B^{2}$
//
$(A-B)(A+B)$
(incorrect)
Problem 8. (1 point) Library/FortLewis/Algebra/2-3-Expanding-and-factoring/MCH1-2-3-02-Expanding-and-factoring.pg
Expand the expression $(y+7)(y-1)$ and combine like terms. Simplify your answer as much as possible.
help (formulas)
Answer(s) submitted:
\bullet
(incorrect)
Problem 9. (1 point) Library/FortLewis/Algebra/2-3-Expanding-and-factoring/MCH1-2-3-44-Expanding-and-factoring-old.pg
Factor the expression $x^{2}+17 x$. Simplify your answer as much as possible.
$\left(_\right.$) (_) help (formulas)
Answer(s) submitted:
\bullet
(incorrect)
Problem 10. (1 point) Library/FortLewis/Algebra/2-3-Expanding-and -factoring/MCH1-2-3-16-Expanding-and-factoring.pg
Expand the expression $(x-y)^{3}$ and combine like terms. Simplify your answer as much as possible.

$$
\ldots \text { help (formulas) }
$$

Answer(s) submitted:
(incorrect)

Problem 11. (1 point) Library/FortLewis/Algebra/2-3-Expanding-and -factoring/MCH1-2-3-09-Expanding-and-factoring.pg
Expand the expression $(x-6)^{2}$ and combine like terms. Simplify your answer as much as possible.
_help (formulas)
Answer(s) submitted:
-
(incorrect)

Problem 12. (1 point) Library/FortLewis/Algebra/2-3-Expanding-and -factoring/MCH1-2-3-12-Expanding-and-factoring.pg
Expand the expression $(x+8)(x-8)$ and combine like terms. Simplify your answer as much as possible.
\ldots help (formulas)
Answer(s) submitted:
-
(incorrect)

Problem 13. (1 point) Library/FortLewis/Algebra/2-3-Expanding-and -factoring/MCH1-2-3-06-Expanding-and-factoring.pg
Expand the expression $(a+b+c)(a+b-c)$ and combine like terms. Simplify your answer as much as possible.
\qquad help (formulas)
Answer(s) submitted:
(incorrect)

Problem 14. (1 point) Library/FortLewis/Algebra/2-3-Expanding-and -factoring/MCH1-2-3-68-Expanding-and-factoring.pg
Factor the expression $(r+1)^{2}+12 t(r+1)+36 t^{2}$. Simplify your answer as much as possible, but do not combine like factors.
___ help (formulas)
Answer(s) submitted:
(incorrect)
Problem 15. (1 point) Library/FortLewis/Algebra/2-3-Expanding-and -factoring/MCH1-2-3-30-Expanding-and-factoring-old.pg
Factor the expression $t^{2}-27 t+50$. Simplify your answer as much as possible.

Answer(s) submitted:
-
(incorrect)

Factor:

$$
(5+1)^{2}+8 t(5+1)+16 t^{2}
$$

Note: \qquad square \qquad square $(4 t)^{2}$

$$
(a+b)^{2}=a^{2}+2 a b+b^{2}<\text { (general form) }
$$

(perfect square

Ex Expand

$$
\begin{aligned}
& (A+B+C)(A-B+C) \\
& A(A-B+C)+B(A-B+C)+C(A-B+C) \\
& A^{2}-A B+A C+B A-B^{2}+B C+A C-B C+C^{2} \\
& A^{2}+2 A C-B^{2}+C^{2}
\end{aligned}
$$

Problem 16. (1 point) Library/FortLewis/Algebra/2-4-Algebraic-fra ctions/MCH1-2-4-06-Algebraic-fractions.pg
Write the expression as a single fraction. Simplify your answer.
$7 z=$ common denom.

Problem 17. (1 point) Library/FortLewis/Algebra/2-4-Algebraic-fra ctions/MCH1-2-4-24-Algebraic-fractions.pg
Multiply and simplify. Assume any factors you cancel are not zero.

$$
\frac{a b+b}{2 b^{2}+18 b} \cdot \frac{9 a^{2}+18 a}{a+a^{2}}=
$$

\qquad
Answer (s) submitted:

(incorrect)

Problem 18. (1 point) Library/FortLewis/Algebra/2-4-Algebraic-fra ctions/MCH1-2-4-52-Algebraic-fractions.pg
Simplify the following expression. Assume any factors you caneel are not zero.

$$
\frac{\frac{9}{s}+\frac{4}{t}}{s t}=
$$

\qquad
Answer (s) submitted:

$$
\bullet
$$

(incorrect)
$\overline{\text { Problem 19. (1 point) Library/FortLewis/Algebra/2-4-Algebraic-fra }}$ ctions/MCH1-2-4-04-Algebraic-fractions.pg
Write the expression as a single fraction. Simplify your answer.

$$
\frac{5}{x}+\frac{3}{x-1}=
$$

\qquad
Answer (s) submitted:

(incorrect)
Problem 20. (1 point) Library/FortLewis/Algebra/2-4-Algebraic-fra ctions/MCH1-2-4-60-Algebraic-fractions.pg
Simplify the following expression. Assume any factors you caneel are not zero.

$$
\frac{\frac{5}{k+1}-1}{\frac{4}{k+1}+1}=
$$

\qquad

Answer (s) submitted:
-
(incorrect)
Problem 21. (1 point) Library/FortLewis/Algebra/2-4-Algebraic-fra ctions/MCH1-2-4-12-Algebraic-fractions.pg
Write the expression as a single fraction. Simplify your answer.

(incorrect)
Problem 22. (1 point) Library/FortLewis/Algebra/6-1-Exponent-rule s/MCH1-6-1-78-Exponent-rules.pg
Using laws of exponents, rewrite the following expression as a product.
$3^{3+4}=$ help (numbers)
Answer (s) submitted:
\bullet
(incorrect)

Problem 23. (1 point) Library/FortLewis/Algebra/6-1-Exponent-rule s/MCH1-6-1-90-Exponent-rules.pg
Using laws of exponents, rewrite the following expression as a quotient. help (numbers)

$$
e^{t-3}(t+4)=
$$

Answer(s) submitted:
-
(incorrect)
Problem 24. (1 point) Library/FortLewis/Algebra/6-1-Exponent-rule s/MCH1-6-1-62-Exponent-rules.pg
Rewrite the following expression without parentheses. Simplify your answer as much as possible, and assume that all variables are positive. help (formulas)

$$
\left(\frac{3 p}{q^{9}}\right)^{3}=
$$

\qquad
Answer(s) submitted:
-
(incorrect)
Problem 25. (1 point) Library/FortLewis/Algebra/6-1-Exponent-rule s/MCH1-6-1-44-Exponent-rules.pg
Rewrite the following using a single exponent. help (formulas)
$\left((a+b)^{2}\right)^{5}=(\square)-$
Answer(s) submitted:
\bullet
(incorrect)
Problem 26. (1 point) Library/FortLewis/Algebra/6-1-Exponent-rule s/MCH1-6-1-40-Exponent-rules.pg
Rewrite the following using a single exponent. help (formulas)
$\left(x^{2}+y\right)^{5}\left(x+y^{2}\right)^{5}=$ \qquad)
Answer(s) submitted:
\bullet
(incorrect)
Problem 27. (1 point) Library/FortLewis/Algebra/6-1-Exponent-rule s/MCH1-6-1-34-Exponent-rules.pg
Rewrite the following using a single exponent. help (formulas)
$a^{7} b^{7}=(\square)$
Answer(s) submitted:
\bullet
(incorrect)
$\overline{\text { Problem 28. (1 point) Library/FortLewis/Algebra/6-1-Exponent-rule }}$ s/MCH1-6-1-74-Exponent-rules.pg
Select all expressions that are equivalent to $\frac{3^{n}}{2^{n}}$. There may be more than one correct answer.

- A. $-\left(\frac{3}{2}\right)^{n}$
- B. $\frac{2^{-n}}{3^{-n}}$
- C. $\left(\frac{2}{3}\right)^{-n}$
- D. $\left(\frac{3}{2}\right)^{n}$
- E. $\left(\frac{1}{\frac{2}{3}}\right)^{n}$
- F. $(1.5)^{n}$

Answer(s) submitted:
-
(incorrect)
Problem 29. (1 point) Library/FortLewis/Algebra/6-1-Exponent-rule s/MCH1-6-1-38-Exponent-rules.pg
Rewrite the following using a single exponent. help (formulas)
$A^{n+7} B^{n} B^{7}=$ \qquad)
Answer(s) submitted:

$$
\bullet
$$

(incorrect)
Problem 30. (1 point) Library/FortLewis/Algebra/6-1-Exponent-rule s/MCH1-6-1-50-Exponent-rules.pg
Without a calculator, determine whether the following quantities are positive or negative.

$$
\begin{array}{|l|l}
\hline ? & \text { 1. }
\end{array}(-75)^{74}
$$

Answer(s) submitted:
-
\bullet
\bullet
(incorrect)

Problem 31. (1 point) Library/FortLewis/Algebra/6-2-Fractional-ex ponents/MCH1-6-2-14-Fractional-exponents.pg
Write the expression as an equivalent expression in the form x^{n}. Simplify your answer as much as possible, and enter your answer as a fraction.
$\sqrt[3]{x^{10}}=x^{n}$ for $n=$ \qquad help (fractions)
Answer(s) submitted:
-
Problem 32. (1 point) Library/FortLewis/Algebra/6-2-Fractional-ex ponents/MCH1-6-2-04-Fractional-exponents.pg
Evaluate the following expression without using a calculator. Simplify your answer as much as possible, and enter your answer as a fraction.

Answer(s) submitted:
-
(incorrect)
Problem 33. (1 point) Library/FortLewis/Algebra/6-2-Fractional-ex ponents/MCH1-6-2-24-Fractional-exponents.pg
Combine radicals, if possible. Simplify your answer as much as possible.
$8 \sqrt{12 t^{3}}+3 t \sqrt{128 t}-3 t \sqrt{48 t}=(\square) \sqrt{2 t}+($

(incorrect)

Problem 34. (1 point) Library/FortLewis/Algebra/6-2-Fractional-ex ponents/MCH1-6-2-10-Fractional-exponents.pg
Simplify the following expression as much as possible. Assume that all variables are positive.
$\frac{\sqrt[3]{125 x^{10} y^{7}}}{\sqrt[3]{27 x^{4} y}}=$ \qquad help (formulas)
Answer(s) submitted:
-
(incorrect)

Problem 35. (1 point) Library/FortLewis/Algebra/1-3-Equivalent-ex pressions/MCH1-1-3-14c-Equivalent-expressions.pg
Determine whether the expressions are equivalent or not.$\sqrt{x^{4}+81}$ and $\left(x^{4}+81\right)^{1 / 2}$
? 2. $\sqrt{x^{4}+81}$ and $(x+3)^{2}$
? 3 .
$\sqrt{x^{4}+81}$ and $\left(x^{4}+81\right)^{0.5}$$\sqrt{x^{4}+81}$ and $x+3$
? 5. $\sqrt{x^{4}+81}$ and $x^{2}+9$

Answer(s) submitted:
-
\bullet
\bullet
\bullet
(incorrect)

