$1. \ \ Please \ complete \ the \ unit \ circle: \\ \textit{Meaning Put In all coordinates, degrees, and radians}$

 $2.\ \, {\rm List}$ the three Pythagorean Identities:

1.
$$\sin^2(x) + \cos^2(x) = 1$$

2.
$$\tan^2(x) + 1 = \sec^2(x)$$

3.
$$1 + \csc^2(x) = \cot^2(x)$$

3. Give a function equivalent to what is given:

a)
$$\sin(-x) = -\sin(x)$$

b)
$$\cot(x - \frac{\pi}{2}) = -\tan(x)$$

4. Evaluate Exactly, without decimals: (If Undefined, write: UND)

$$a) \sin(\frac{17\pi}{2}) = 1$$

b)
$$\cos(-315^{\circ}) = \frac{\sqrt{2}}{2}$$

c)
$$\cos^{-1}(\frac{\sqrt{3}}{2}) = \frac{\pi}{6}$$

d)
$$\tan(420^\circ) = \sqrt{3}$$

e)
$$\arctan(1) = \frac{\pi}{4}$$

f)
$$\cot(3\pi) = \text{UND}$$

g)
$$\csc^{-1}(2) = \frac{\pi}{6}$$

$$h) \sec(\frac{7\pi}{6}) = -\frac{2\sqrt{3}}{3}$$

i)
$$\sin^{-1}(0) = 0$$

j)
$$\tan(\frac{11\pi}{6}) = \frac{\sqrt{3}}{3}$$

k)
$$\operatorname{arccot}(-1) = \frac{3\pi}{4}$$

l)
$$\sec^{-1}(0) = UND$$

5. What is $\sin(\tan^{-1}(x))$?

$$\theta = \tan^{-1}(x)$$

$$\tan(\theta) = \tan(\tan^{-1}(x))$$

$$\tan(\theta) = x$$

Adjacent side = 1, Opposite Side = x

Find the Hypotenuse:

$$(Hyp)^2 = x^2 + 1^2$$

$$(\mathrm{Hyp}) = \sqrt{x^2 + 1}$$

$$\sin(\cot^{-1}(x)) = \sin(\theta) = \frac{\text{Opposite Side}}{\text{Hypotenuse}} = \frac{x}{\sqrt{x^2 + 1}}$$

 $6.\ \,$ For The following, write the letter of the graph corresponding to its equation.

D

a)
$$y = \cos(x)$$

b)
$$y = 2\sin(\frac{5}{6}x)$$
 F

c)
$$y = -\cos(x - \frac{5\pi}{4}) + 1$$

d)
$$y = \frac{1}{2}\sin(2x) + \frac{1}{2}$$
 E

e)
$$y = \frac{2}{3}\cos(x + \frac{3\pi}{4}) - 1$$
 A

f)
$$y = -\frac{1}{3}\sin(3(x + \frac{\pi}{3}))$$
 B

7. State the Period, Amplitude and all Shifts(as well as their direction) of the following functions:

a)
$$y = 12\cos(\frac{3\pi}{8}x) + 3$$

Amplitude: 12

Period: $\frac{16}{3}$

Vertical Shift: Up 3

Phase Shift: None

b)
$$y = -(\frac{2}{3})\sin(x + \frac{\pi}{3}) - 2$$

Amplitude: $\frac{2}{3}$

Period: 2π

Vertical Shift: Down 2

Phase Shift: $\frac{\pi}{3}$ to the left

GRAPHS For #6

