Monday Week 10

"The negative 1 gets used in two different context.
Functions: $f(x)=\frac{3}{x-1}, f^{-1}(x)=\frac{3+x}{x}$

$$
\begin{aligned}
& y=\frac{3}{x-1}, x=\frac{3}{y}-1 \\
& x(y-1)=3 \\
& x y-x=
\end{aligned}
$$

$$
\begin{aligned}
& 30^{\circ} \times \frac{\pi}{180}=\frac{\pi}{6} \\
& \tan \left(\frac{11 \pi}{6}\right)=\frac{\sin \frac{11 \pi}{6}}{\cos \frac{1 \pi \pi}{6}}=\frac{-1 / 2}{\sqrt{3} / 2}=\frac{-1}{\sqrt{3}}-\frac{-\sqrt{3}}{3} \\
& \sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)=\frac{\pi}{3} \\
& \text { what } y-\cos \text { al }=\frac{\sqrt{3}}{2} \\
& \csc \left(\frac{7 \pi}{6}\right) \\
& \frac{1}{\sin \left(\frac{7 \pi}{6}\right)}=\frac{1}{-1 / 2}=1\left(\frac{-2}{1}\right)=-2 \\
& \tan ^{-1}(1)=\frac{\pi}{4}
\end{aligned}
$$

Where $\frac{\sin \theta}{\cos \theta}=1$

$$
\begin{aligned}
& \cot \theta=\frac{1}{\tan \theta}=\frac{1}{\left(\frac{\sin \theta}{\cos \theta}\right)}=\frac{\cos \theta}{\sin \theta} \\
& \text { eats angles }
\end{aligned}
$$

$\tan ^{-1} x=\arctan (x)$
('the angle θ whose $\tan \theta=x$

$$
x y-x=3 y=\frac{3+x}{x}
$$ eats slopes

Real \#'s
3. x

$$
\begin{aligned}
& 3^{-1}=\frac{1}{3} \\
& x^{-1}=\frac{1}{x}
\end{aligned}
$$

Mixing trig and inverse trig functions
Single Case: Evaluate $\sin \left(\sin _{\pi}^{-1}(\pi / 2)\right)=\frac{\pi}{2}$
these match (i, they cancel)

Geverel Case: Evaluate $\sin \left(\tan ^{-1}(x)\right)$
step 1: understand what $\tan ^{-1}(x)$ means (in terms triangles)
... where (an angle) tangent $=x$

$\operatorname{step} 2$
you choose that $\tan \theta=x$
Step 3 use p that b alb $\begin{aligned} & c^{2}=a^{2}+b^{2} \\ & c^{2}=1+x^{2}\end{aligned}$ remaining side.

From stop 2
Step $4 \sin \left(\tan ^{-1} x\right) \stackrel{d}{=} \sin (\theta)=\frac{\text { opp }}{h y p}=\frac{x}{\sqrt{x^{2}+1}}$ look@ @

Ex

$$
\sec \left(\sin ^{-1}(x)\right)=
$$

step 1: what does $\sin ^{-1} x$ mean?
set: $\sin ^{-1}(x)=\theta$ whose $\sin (\theta)=x$ \downarrow an angle

$$
\begin{gathered}
\sin \left(\sin ^{-1} x\right)=\sin \theta \\
x=\sin \theta
\end{gathered}
$$

Step Male \triangle

Step $1^{2}=x^{2}+a^{2}$ is $a^{2}=1-x^{2}$
$a=\sqrt{1-x^{2}}$

$$
\sec (\theta)=\frac{1}{\cos \theta}=\frac{1}{\left(\frac{\sqrt{1-x^{2}}}{1}\right)}=\frac{1}{\sqrt{1-x^{2}}}
$$

$$
\begin{gathered}
\sin ^{2} x+\cos ^{2} x=1 \\
\sin ^{2} x=1-\cos ^{2} x \\
2\left(\sin ^{2} x\right)+4 \cos x+1=0 \\
2\left(1-\cos ^{2} x\right)+4 \cos x+1=0 \\
2-2 \cos ^{2} x+4 \cos x+1= \\
-2 \cos ^{2} x+4 \cos x+3=0
\end{gathered}
$$

