Thursday -

Let u and v be anglo in tho first aumdrant, and let Talking:

$$
\sin u=\frac{1}{3} \quad \text { and } \quad \sin v=\frac{1}{4}
$$

Then $\cos u=\frac{\partial \sqrt{2}}{3}$, Pythagorean!

\square

$$
\begin{aligned}
& \sin ^{2} u+\cos ^{2} u=1 \\
& \left(\frac{1}{3}\right)^{2}+\cos ^{2} u=1
\end{aligned}
$$

$$
\sin (u+v)=\square
$$

$$
\cos u= \pm \sqrt{1-\frac{1}{9}}= \pm \frac{\sqrt{8}}{3}=\frac{2 \sqrt{2}}{3}
$$

$$
\begin{aligned}
& \frac{\sin (u)}{\cos (v)} \frac{\sin (v)}{\frac{1}{3} \cdot \frac{\sqrt{15}}{4}+\frac{1}{4} \cdot \frac{2 \sqrt{2}(n)}{3}=\frac{\sqrt{15}+\sqrt{8}}{12}} \\
& \neq \frac{\sqrt{15+18}}{12}
\end{aligned}
$$

$$
\cos V= \pm \sqrt{1-\left(\frac{1}{4}\right)^{2}}
$$

$$
=\sqrt{\frac{15}{16}}=\frac{\sqrt{15}}{4}
$$

$$
\tan (A) \cdot\left(2 \cos ^{3}(A)-\cos (A)\right)=\sin (A)-2 \sin ^{3}(A)
$$

Proof:

$$
\begin{aligned}
\underline{\tan (A)} & \cdot\left(2 \cos ^{3}(A)-\cos (A)\right) \\
= & \sin (A) \cdot \frac{1}{\cos (A)} \cdot\left(2 \cos ^{3}(A)-\cos (A)\right): \sin (A)\left(\frac{2 \cos (A)}{\cos (A)}-\frac{\cos A}{\cos A}\right) \\
= & \sin (A) \cdot\left(2 \cos ^{2}(A)-\sin (A)\left(2 \cos ^{2}(A)-1\right)=\sin A\left(2-2 \sin ^{2} A-1\right)\right. \\
= & \sin (A) \cdot\left(2-2 \cdot \sin ^{2} A \quad 2\left(1-\sin ^{2}(A)\right)\right. \\
= & \sin (A) \cdot\left(1-2 \sin ^{2} A \quad 2-2 \sin ^{2} A\right. \\
= & \sin A \quad 2 \sin ^{3} A \\
= & \sin (A)-2 \sin ^{3}(A)
\end{aligned}
$$

$$
\begin{aligned}
& \cot x \cos (2 x)=-\sin (2 x)+\cot x) \\
& { }^{\prime \prime}-(2 \sin x \cos x) \\
& (土 d-\mid i \sin)
\end{aligned}
$$

$$
\frac{\cos x}{\sin x} \cdot\left(1-2 \sin ^{2} x\right)
$$

11

$$
\frac{\cos x}{\sin x}-2 \cos x \cdot \sin x
$$

$!$

$$
\cot x-\sin (2 x)
$$

Venfy the identity

1. start w ore side (more complicated) $\frac{1}{3}$ strick with it
2. use basil formulas to re-winte.
3. stuck? write $\tan \frac{1}{3}$ ct via $\sin \frac{1}{4} \cos$

4 stuck expand other side

Eye verify the identity

$$
(1+\sin x)[1+\sin (-x)]=\cos ^{2} x
$$

$$
\left\lvert\, \begin{gathered}
(1+\sin x)(1-\sin (x) \\
\text { diff of sames } \\
1-\sin ^{2}(x)=\cos ^{2} x \\
\rightarrow \quad \text { phthas. }
\end{gathered}\right.
$$

Next week
Law of Since:

$$
\frac{\sin \alpha}{A}=\frac{\sin \beta}{B}=\frac{\sin \gamma}{C}
$$

works for any \triangle.

$$
\begin{aligned}
& \sin (\alpha)=\frac{h}{B} \\
& B \cdot \sin (\alpha)=h
\end{aligned}
$$

S

$$
\begin{aligned}
& \underbrace{\sin (\beta)=\frac{h}{A}} \\
& A \cdot \sin (\beta)=h \\
& B \cdot \sin (\alpha)=\sin (\beta) \cdot A
\end{aligned}
$$

$$
\frac{B \cdot \sin (\alpha)}{B A}=\frac{\sin (\beta) \cdot A}{B A}
$$

$$
\frac{\sin (\alpha)}{A}=\frac{\sin (\beta)}{B}
$$

