MA ${ }_{1}^{1} 15$ Final Exam Name:

1. Simplify each expression.
a) $(4 y)^{-1}\left(3 x z^{0}\right)^{2}$ \qquad $-$

$$
\left(z^{0}\right)^{2}=1^{2}=1
$$

Exponents play nizeles w/ $x \frac{1}{3} \div$
b) $\left(\frac{3}{x}\right)^{2}\left(\frac{2}{x}\right)^{-3}$

$$
\frac{3^{2}}{x^{2}} \cdot\left(\frac{x}{2}\right)^{3}=\frac{9}{x^{2}} \cdot \frac{x^{3}}{2^{3}}=\frac{9 x}{8}
$$

2. Find the domain of the given function.

$$
\begin{array}{ll}
f(x)=\frac{3}{\sqrt{4-x}} \quad \begin{array}{l}
\text { set of allowable inputs } \\
<>0
\end{array} \quad \begin{array}{l}
\text { - Sort: inside } \geqslant 0 \\
\text { No division by zero }
\end{array}
\end{array}
$$

$4-x>0$
$4>x$

$$
\begin{array}{ll}
g(x)=5 & \text { constant } \\
h(x)=x^{2}+3 x & \mathbb{R} \text { or }(-\infty, \infty) \\
k(x)=\frac{1}{x^{2}-7 x+12} & \mathbb{R} \\
k-\{3,4\} \text { or }(-\infty, 3) \cup(3,4) \cup(4, \infty)
\end{array}
$$

3. Write an equation of the line that has the given characteristics.
a) Passes through points $(-1,4)$ and $(2,3)$
$y-y_{1}=m\left(x-x_{1}\right)$
$m=$ slope $=\frac{\text { rise }}{\text { run }}=\frac{4-3}{-1-2}=\frac{1}{-3}$
$\left(x_{1}, y_{1}\right)=$ given points

$$
y-3=\frac{-1}{3}(x-2)
$$

b) Passes through points $(7,-5)$ and $(7,3)$
c) Line, parallel to $y=\frac{1}{3} x+2$ and passes through the point $(0,1)$

4. Find all solutions.

$$
\text { a) } 4 x^{2}-5 x-6=0=4 x^{2}-8 x+3 x-6
$$

(2) group:

$$
4 x(x-2)+3(x-2)
$$

b) $x^{3}+2 x^{2}+x=0$

$$
\begin{array}{cc}
(x-2)(4 x+3)=0 \\
11 & 11 \\
0 & 0
\end{array} \quad \& \quad \begin{gathered}
x=2 \\
o \\
x=-3 / 4
\end{gathered}
$$

$$
\text { common } x \text {-term }
$$

$$
x(\underbrace{x^{2}+2 x+1})=0
$$

$$
x(x+1)^{2}=0
$$

$$
x=0 \quad(x+1)^{2}=0
$$

$$
x+1= \pm \sqrt{\theta}=0
$$

$$
x=-1
$$

function composition
5. Use these functions for the following questions:

$$
\begin{aligned}
& \widehat{f(x)}=2 x+1 \\
& g(x)=x^{2}+3 x-1
\end{aligned}
$$

a) Find the function $f \circ f(x)=f(f(x))$

$$
\begin{aligned}
f(f(x)) & =2 \cdot f(x)+1 \\
& =2(2 x+1)+1 \\
& =4 x+2+1 \\
& =4 x+3
\end{aligned}
$$

b) Find the function $g \circ f$

$$
\begin{aligned}
& g(f(x))=f^{2}(x)+3 f(x)-1=(2 x+1)^{2}+3(2 x+1)-1 \\
& \quad=4 x^{2}+4 x+1+6 x+3-1 \\
& \quad=4 x^{2}+10 x+3
\end{aligned}
$$

6. Find the inverse function of f.

$$
f(x)=\frac{5}{3 x^{3}-1}=y
$$

(1) set: $y=f(x)$
(2) swap x and y
(3) Solve for y

$$
\begin{aligned}
& \frac{5}{3 y^{3}-1}=x=\frac{x}{1} \\
&\left(3 y^{3}-1\right) x=5 \\
& 3 y^{3} x-x=5 \\
& 3 y^{3} x=5+x \\
& y^{3}=\frac{5+x}{3 x} \text { or } f^{-1}(x)=3 \sqrt{\frac{5+x}{3 x}}
\end{aligned}
$$

1. $\log A^{c}=c \cdot \log A$
2. $\log (A \cdot B)=\log A+\log B$
$3 \log \left(\frac{A}{B}\right)=\log A-\log B$
3. Write the expression below as the logarithm base c of a single number.

$$
\begin{gathered}
\log _{c}(5)-\frac{1}{2} \log _{c}(25)+2 \log _{c}(3)=\log _{c} \\
\log _{c}(5)-\log _{c}\left(25^{\frac{1}{2}}\right)+\log _{c} 3^{2} \\
\log _{c} 5-\log _{c} 5+\log _{c} 9 \\
\log _{c} 9
\end{gathered}
$$

8. Find the solution. (Solve for the variable first, then grab a calculator)
hit
w/
a) $e^{3 x}=15$

$$
\begin{aligned}
& \ln \left(e^{3 x}\right)=\ln 15 \\
& 3 x \cdot \underbrace{\ln (e)}_{=1}=\ln 15 \quad x=\frac{\ln 15}{3}
\end{aligned}
$$

b) $3^{4 x}=30$

$$
\begin{array}{ll}
\ln \left(3^{4 x}\right)=\ln (30) & x=\frac{\ln 30}{4 \ln 3} \\
4 x \cdot \ln (3)=\ln (30) & 5 e^{3 x+1}-40
\end{array}
$$

Idea: use algebra to get $e^{3 x+1}=\square$

$$
-4 e^{3 x+1}=-40
$$

d) $\log _{2}(x)+\log _{2}(x+2)=\log _{2}(24)$

I dea:

$$
\begin{aligned}
& e^{3 x+1}=10, \quad x=\frac{\ln 10-1}{3} \\
& 3 x+1=\ln 10
\end{aligned}
$$

$x(x+2)=24$
quadrate
$x^{2}+\partial x-\partial 4=0$

$$
(x+12)(x-2)=0
$$

9. Modeling

$$
\begin{aligned}
& 20=e^{(\ln 6) / 6} \cdot t \\
& \ln 20=\frac{\ln 6}{6} \cdot t
\end{aligned}
$$

a) The number N of bacteria in a culture follows the exponential growth model $N=A e^{k t}$, where t is the time in hours. If the initial population is 50 and 6 hours later $N=300$, when will $N=1000$

(2) $t=0 \leftrightarrow N=50$ (Initial P is 50)
(4) Update Model

Update Model
$N=50 e^{(\ln (6) / 6) \cdot t}$
$1000=50 e^{\ln (6) / 6 \cdot t}$
(3) $t=6 \Leftrightarrow N=350$
(4) Coal: when will $N=1000$ (find/solve for t, set $N=(000)$
(2)

$$
\begin{aligned}
& N=A e^{k t} \\
& 50=A e^{k \cdot 0}=A \quad \begin{array}{l}
\text { was } N=A e^{k t}
\end{array} \\
& \begin{array}{l}
\text { (3) }
\end{array} \text { wow } N=50 e^{k t}
\end{aligned}
$$

$$
\begin{array}{l|l}
\text { (3) upate Formula } & \text { sub } t=6 \text {, set } N \\
\text { was } N=A e^{k t} & 300=50 e^{k \cdot 6} \\
\text { Now } N=50 e^{k t} & \text { solve fer he k. }
\end{array}
$$

$$
\begin{aligned}
& 2=e^{k \cdot 6} \\
& \text { so } k=\frac{\ln (6)}{6}
\end{aligned}
$$

b) The population p of a species of bird y $(6)=k$ years after it is introduced

1) Determine the population size that was introduced into the habitat.

$$
\begin{aligned}
& \text { initial pop: what is } P \text { when } t=0 \\
& 1+4 e^{0}
\end{aligned}=\frac{3500}{1+4}=700
$$

2) After how many years will the population be 2400 ?

$$
\begin{array}{r}
p=2400 \\
2400=\frac{3500}{1+4 e^{-t / 3}}
\end{array}
$$

clos mull.

$$
\begin{aligned}
1+4 e^{-t / 3} & =\frac{350 \phi}{24} 601=\frac{35}{24} \\
4 e^{-t / 3} & =\frac{35}{24}-1=\frac{11}{24} \\
e^{-t / 3} & =\frac{11}{96} \\
-t / 3 & =\ln (11 / 96), t=-3 \ln (11 / 96)
\end{aligned}
$$

http://myweb.nmu.edu/crseval
10. Verify the following identities
a) $\cos (x)(\sec (x)+2 \sin (x))=1+\sin (2 x)$

$$
\frac{1}{\cos (x)}
$$

(1) distribute:
(2)

$$
1+2 \sin (x) \cos (x)=1+\sin (2 x)
$$

(3) $\sin \theta \sin (2 x)=\sin (x+x)=\sin (x) \cos (x)+\operatorname{se}(x) \cos (x)=2 \sin (x) \cos (x)$
b) $\frac{1-\cos (x)}{\sin (x)}+\frac{\sin (x)}{1-\cos (x)}=2 \csc (x)$
common denom.

$$
\begin{aligned}
& \frac{1-\cos (x)}{1-\cos (x)} \cdot \frac{1-\cos (x)}{\sin (x)}+\frac{\frac{\sin (x)}{1-\cos (x)} \cdot \frac{\sin (x)}{\sin (x)}}{\frac{[1-\cos (x)]^{2}+\sin ^{2}(x)}{(1-\cos (x))(\sin (x))}=\frac{1-2 \cos (x)+\cos ^{2}(x)+\sin ^{2}(x)}{(1-\cos (x)) \sin (x)}=1}=2-2 \cos x \\
& =\frac{2(1-\cos (x))}{1-\cos (x) \sin (x)}=2 \cdot\left(\frac{1}{\sin (x))=2 \cdot \csc (x)}\right.
\end{aligned}
$$

11. Rewrite as an algebraic expression of x .

start here:

$\sin ^{-1}(x)$ is an angle whose $\frac{\text { opposite side }}{\text { hypotenuse }}=\frac{x}{1}$

12. Find all solutions.
$\frac{4 \pi}{6}=\frac{2 \pi}{3}$

(1)
a) $2 \sin (3 \theta)+1=0$

$$
\sin (3 \theta)=\frac{-1}{2} \text { so } 3 \theta=-\frac{\pi}{6} \quad \text { or } \quad 3 \theta=\frac{7 \pi}{6}
$$

$$
\begin{array}{lll}
\begin{array}{l}
\text { now } \\
\text { add } \\
2 \pi k
\end{array} & 3 \theta=-\frac{\pi}{6}+2 \pi k & \text { or } \\
\theta \theta=\frac{-\pi}{18}+\frac{2}{3} \pi k & \text { or } & \theta=\frac{7 \pi}{18}+\frac{2}{3} \pi k
\end{array}
$$

b) $2 \sin (\theta) \cos (\theta)-\cos (\theta)=0$

14. A pilot measures the angle of depression to two ships in the water in front of the plane as 15° and 25° respectively. If the pilot is flying at an altitude of 20,000 feet, find the distance between the two ships. Draw a picture.

$$
\begin{aligned}
& \text { Right } \Delta \text { Trig. } \\
& \cos (65)=\frac{20,000}{B}, B=\frac{20000}{\cos 65} \approx 47,324
\end{aligned}
$$

$$
55^{\circ}-10^{\circ}=15^{\circ}
$$

$$
\frac{\sin (15)}{B}=\frac{\sin 10}{x}
$$

$180-90-65$
$90-65=25$

$$
x=\frac{47324}{\sin (15)} \cdot \sin (10)
$$

15. Match the equation to the graph (Each one has a place...)
a) $\cos (x)$
b) $-3 \cos (x)$
c) $2 \sin (-x)$
d) $\cos (3 x)-1$
e) $4 \cos (2 x)$
f) $4 \cos \left(\frac{1}{2} x\right)$
g) $2 \sin (x)$
h) $\cos (3 x)+1$

EXTRA WORK SPACE.

Formula Sheet

$$
\begin{aligned}
\sin (A+B) & =\sin (A) \cos (B)+\sin (B) \cos (A) \\
\sin (A-B) & =\sin (A) \cos (B)-\sin (B) \cos (A) \\
\cos (A+B) & =\cos (A) \cos (B)-\sin (A) \sin (B) \\
\cos (A-B) & =\cos (A) \cos (B)+\sin (A) \sin (B)
\end{aligned}
$$

And as an application of these formulas...

$$
\begin{gathered}
\sin (2 A)=2 \sin (A) \cos (A) \\
\cos (2 A)=\cos ^{2}(A)-\sin ^{2}(A)
\end{gathered}
$$

Also:

$$
\begin{gathered}
\frac{\sin (A)}{a}=\frac{\sin (B)}{b}=\frac{\sin (C)}{c} \\
c^{2}=a^{2}+b^{2}-2 a b \cos (C)
\end{gathered}
$$

