

M 115 Fina Exam
$-$

1. Simplify each expression.
a) $(4 y)^{-1}\left(3 x z^{0}\right)^{2}$ \qquad
Exponents play nizeles w/ $* \frac{1}{3} \div$
b) $\left(\frac{3}{x}\right)^{2}\left(\frac{2}{x}\right)^{-3}$

$$
\frac{3^{2}}{x^{2}} \cdot\left(\frac{x}{2}\right)^{3}=\frac{9}{x^{2}} \cdot \frac{x^{3}}{2^{3}}=\frac{9 x}{8}
$$

2. Find the domain of the given function.

$$
f(x)=\frac{3}{\sqrt{4-x}}
$$

Set of allowable inputs

- Sort: inside $\geqslant 0$
No division by zero
$4-x>0$

$$
\begin{array}{ll}
g(x)=5 & \text { constant }
\end{array} \quad \mathbb{R} \text { or }(-\infty, \infty) .
$$

3. Write an equation of the line that has the given characteristics.
a) Passes through points $(-1,4)$ and $(2,3)$

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

$m=$ slope $=\frac{\text { rise }}{\text { run }}=\frac{4-3}{-1-2}=\frac{1}{-3}$
$\left(x_{1}, y_{1}\right)=$ given points

$$
y-3=\frac{-1}{3}(x-2)
$$

b) Passes through points $(7,-5)$ and $(7,3)$
c) Line, parallel to $y=\frac{1}{3} x+2$ and passes through the point $(0,1)$

4. Find all solutions.

$$
\text { a) } 4 x^{2}-5 x-6=0=4 x^{2}-8 x+3 x-6
$$

(2) group:

$$
4 x(x-2)+3(x-2)
$$

b) $x^{3}+2 x^{2}+x=0$

$$
\begin{array}{cc}
(x-2)(4 x+3)=0 \\
11 & 11 \\
0 & 0
\end{array} \quad \& \quad \begin{gathered}
x=2 \\
o \\
x=-3 / 4
\end{gathered}
$$

$$
\text { common } x \text {-term }
$$

$$
x(\underbrace{x^{2}+2 x+1})=0
$$

$$
x(x+1)^{2}=0
$$

$$
x=0 \quad(x+1)^{2}=0
$$

$$
x+1= \pm \sqrt{\theta}=0
$$

$$
x=-1
$$

function composition
5. Use these functions for the following questions:

$$
\begin{aligned}
& \widehat{f(x)}=2 x+1 \\
& g(x)=x^{2}+3 x-1
\end{aligned}
$$

a) Find the function $f \circ f(x)=f(f(x))$

$$
\begin{aligned}
f(f(x)) & =2 \cdot f(x)+1 \\
& =2(2 x+1)+1 \\
& =4 x+2+1 \\
& =4 x+3
\end{aligned}
$$

b) Find the function $g \circ f$

$$
\begin{aligned}
& g(f(x))=f^{2}(x)+3 f(x)-1=(2 x+1)^{2}+3(2 x+1)-1 \\
& \quad=4 x^{2}+4 x+1+6 x+3-1 \\
& \quad=4 x^{2}+10 x+3
\end{aligned}
$$

6. Find the inverse function of f.

$$
f(x)=\frac{5}{3 x^{3}-1}=y
$$

(1) set: $y=f(x)$
(2) swap x and y
(3) Solve for y

$$
\begin{aligned}
& \frac{5}{3 y^{3}-1}=x=\frac{x}{1} \\
&\left(3 y^{3}-1\right) x=5 \\
& 3 y^{3} x-x=5 \\
& 3 y^{3} x=5+x \\
& y^{3}=\frac{5+x}{3 x} \text { or } f^{-1}(x)=3 \sqrt{\frac{5+x}{3 x}}
\end{aligned}
$$

1. $\log A^{c}=c \cdot \log A$
2. $\log (A \cdot B)=\log A+\log B$
$3 \log \left(\frac{A}{B}\right)=\log A-\log B$
3. Write the expression below as the logarithm base c of a single number.

$$
\begin{gathered}
\log _{c}(5)-\frac{1}{2} \log _{c}(25)+2 \log _{c}(3)=\log _{c} \\
\log _{c}(5)-\log _{c}\left(25^{\frac{1}{2}}\right)+\log _{c} 3^{2} \\
\log _{c} 5-\log _{c} 5+\log _{c} 9 \\
\log _{c} 9
\end{gathered}
$$

8. Find the solution. (Solve for the variable first, then grab a calculator)
hit
w / \ln
a) $e^{3 x}=15$

$$
\begin{aligned}
& \ln \left(e^{3 x}\right)=\ln 15 \\
& 3 x \cdot \underbrace{\ln (e)}_{=1}=\ln 15 \quad x=\frac{\ln 15}{3}
\end{aligned}
$$

b) $3^{4 x}=30$

$$
\begin{array}{ll}
\ln \left(3^{4 x}\right)=\ln (30) & x=\frac{\ln 30}{4 \ln 3} \\
4 x \cdot \ln (3)=\ln (30) & 5 e^{3 x+1}-40
\end{array}
$$

Idea: use algebra to get $e^{3 x+1}=\square$

$$
-4 e^{3 x+1}=-40
$$

d) $\log _{2}(x)+\log _{2}(x+2)=\log _{2}(24)$

I dea:

$$
\begin{aligned}
& e^{3 x+1}=10, \quad x=\frac{\ln 10-1}{3} \\
& 3 x+1=\ln 10
\end{aligned}
$$

$x(x+2)=24$
quadrate
$x^{2}+\partial x-\partial 4=0$

$$
(x+12)(x-2)=0
$$

9. Modeling

$$
\begin{aligned}
& 20=e^{(\ln 6) / 6} \cdot t \\
& \ln 20=\frac{\ln 6}{6} \cdot t \\
& \frac{6}{\ln 6} \cdot \ln 20=t
\end{aligned}
$$

a) The number N of bacteria in a culture follows the exponential growth model $N=A e^{k t}$, where t is the time in hours. If the initial population is 50 and 6 hours later $N=300$, when will $N=1000$

(4) Update Model
$N=50 e^{(\ln (6) / 6) \cdot t}$
(2) $t=0 \leftrightarrow N=50$

$$
\text { (Initial Pg is } 50 \text {) }
$$

(3) $t=6 \Leftrightarrow N=350$
(4) Coal: when will $N=1000$ (fin d/sulve for t, set $N=(000)$
(2) $N=A e^{k t}$
${ }^{\prime \prime} 0=A e^{k \cdot 0}=A$

b) The population p of a species of bird t years after it is introduced into a new habitat is given by:

$$
p=\frac{3500}{1+4 e^{-t / 3}}
$$

1) Determine the population size that was introduced into the habitat.
initial pop: what is P when $t=0$

$$
p=\frac{3500}{1+4 e^{0}}=\frac{3500}{1+4}=700
$$

2) After how many years will the population be 2400 ?

$$
\begin{aligned}
& p=2400 \\
& 2400= \frac{3500}{1+4 e^{-t / 3}} \\
& 1+4 e^{-t / 3}=\frac{350 \phi}{24 / 50}=\frac{35}{24} \\
& 4 e^{-t / 3}=\frac{35}{24}-1=\frac{11}{24} \\
& e^{-t / 3}=\frac{11}{96} \\
&-t / 3=\ln (11 / 96), \quad t=-\frac{1}{3} \ln (11 / 96)
\end{aligned}
$$

clos mull.

