Name:

1. Simplify each expression.

a)
$$(4y)^{-1}(3xz^0)^2$$
 Exponents play nizely w * ; ;

b)
$$\left(\frac{3}{x}\right)^2 \left(\frac{2}{x}\right)^{-3}$$

$$\frac{3^2}{x^2} \left(\frac{x}{2}\right)^3 = \frac{9}{x^3} \cdot \frac{x}{2^3} = \boxed{\frac{9}{8}}$$

2. Find the domain of the given function.

$$f(x) = \frac{3}{\sqrt{4-x}}$$
 set a allowable input
$$\frac{1}{\sqrt{4-x}} = \frac{1}{\sqrt{4-x}}$$
 Sqrt: Inside 7.0 in division by zero

$$g(x) = 5$$
 constant $|R \propto (-\infty, \infty)$

$$k(x) = x^{2} + 3x$$

$$|R|$$

$$k(x) = \frac{1}{x^{2} - 7x + 12}$$

$$|R| - 53,43 \text{ or } (-\infty,3) \cup (3,4) \cup (4,\infty)$$

- 3. Write an equation of the line that has the given characteristics.
 - a) Passes through points (-1,4) and (2,3)

$$y-y_1 = m(x-x_1)$$

 $m = 8lape = \frac{r'se}{run} = \frac{4-3}{-1-2} = -\frac{1}{3}$

$$y - 3 = -\frac{1}{3}(x - 2)$$

- c) Line, parallel to $y=\frac{1}{3}x+2$ and passes through the point (0,1) , same slope $x=\frac{1}{3}$. $y=\frac{1}{3}$. $y=\frac{1}{3}$
- 4. Find all solutions.

a)
$$4x^2 - 5x - 6 = 0$$
 = $4x^3 - 8x + 3x - 6$

Ac-onethod

$$(x-3)(4x+3) = 0$$

$$(x-3)(4x+3) = 0$$

$$x = 2$$

$$x = -3/4$$

b)
$$x^3 + 2x^2 + x = 0$$

$$\frac{X(X+I)_{g}=Q}{X(X_{g}+9X+I)}=Q$$

$$\begin{array}{c} X = -1 \\ X = 0 \end{array}$$

$$\begin{array}{c} X + 1 = \mp \sqrt{9} = 0 \\ X + 1 = 0 \end{array}$$

function composition

5. Use these functions for the following questions:

$$\widehat{f(x)} = 2x + 1$$

$$g(x) = x^2 + 3x - 1$$

a) Find the function $f \circ f(x) = \mathcal{L}(f(x))$

$$\mathcal{B}(\mathcal{B}(x)) = 2 \cdot \mathcal{B}(x) + 1$$

$$= 2(2x+1) + 1$$

$$= 4x + 2 + 1$$

$$= 4x + 3$$
b) Find the function $g \circ f$

$$= \frac{1}{4} (4x) = 4x + 10x + 3$$

$$= \frac{1}{4} (4x) = 4(x) + 34(x) - 1 = (9x + 1)^{9} + 3(9x + 1) - 1$$

6. Find the inverse function of f.

$$f(x) = \frac{5}{3x^3 - 1} = 4$$

$$\frac{5}{3y^3-1}=\chi=\frac{\chi}{1}$$

$$(3y^3-1)X = 5$$

$$3y^3 \times - \times = 5$$

$$3y^{3} \times = 5 + \chi$$

$$y^{3} = \frac{5 + \chi}{3\chi} \quad \text{ar} \quad ||f'(x)|| = 3\sqrt{\frac{5 + \chi}{3\chi}}$$

1.
$$\log A^{c} = c \cdot \log A$$

2. $\log(A \cdot B) = \log A + \log B$
3 $\log(\frac{A}{3}) = \log A - \log B$

7. Write the expression below as the logarithm base c of a single number.

$$\log_{c}(5) - \frac{1}{2}\log_{c}(25) + 2\log_{c}(3) = \log_{c}(3)$$

$$\log_{c}(5) - \log_{c}(25) + \log_{c}(3) + \log_{c}(3)$$

$$\log_{c}(5) - \log_{c}(25) + \log_{c}(3) + \log_{c}(3)$$

$$\log_{c}(5) - \log_{c}(25) + \log_{c}(3) + \log_{c}(3)$$

8. Find the solution. (Solve for the variable first, then grab a calculator)

8. Find the solution. (Solve for the variable first, then grab a calculator)

Ait

a)
$$e^{3x} = 15$$

$$\ln(e^x) = \ln 15$$

$$3x \cdot \ln(e) = \ln 15$$

$$3x \cdot \ln(e) = \ln 15$$

$$4x \cdot \ln(3) = \ln (30)$$

9. Modeling

a) The number N of bacteria in a culture follows the exponentia growth model $N = Ae^{kt}$, where t is the time in hours. If the initial population is 50 and 6 hours later N = 300, when will N = 1000

(1) grow formula

$$N = Aekt$$

$$50 = Aek.0 = A$$

$$N = Aekt$$

$$N =$$

10(6) = 6.6 % k = \frac{\lambda_{(6)}}{6} b) The population p of a species of bird t years after it is introduced into a new habitat is given by:

$$p = \frac{3500}{1 + 4e^{-t/3}}$$

1) Determine the population size that was introduced into the habitat.

initial pop: what is P when
$$t = 0$$

$$P = \frac{3500}{1+4e^{0}} = \frac{3500}{1+4} = 700$$

2) After how many years will the population be 2400?

$$2400 = \frac{3500}{1 + 4e^{-t/3}}$$
ss, mult.

cross mult.

$$1 + 4e^{-t/3} = \frac{3500}{2450} = \frac{35}{24}$$
 $4e^{-t/3} = \frac{35}{24} - 1 = \frac{11}{24}$
 $e^{-t/3} = \frac{11}{96}$
 $- t/3 = 2e^{-(1/96)}$
 $t = -\frac{1}{3} 2e^{-1/96}$