http://myweb.nmu.edu/crseval
10. Verify the following identities
a) $\cos (x)(\sec (x)+2 \sin (x))=1+\sin (2 x)$

$$
\frac{1}{\cos (x)}
$$

(1) distribute:
(2)

$$
1+2 \sin (x) \cos (x)=1+\sin (2 x)
$$

(3) $\sin \theta \sin (2 x)=\sin (x+x)=\sin (x) \cos (x)+\operatorname{se}(x) \cos (x)=2 \sin (x) \cos (x)$
b) $\frac{1-\cos (x)}{\sin (x)}+\frac{\sin (x)}{1-\cos (x)}=2 \csc (x)$
common denom.

$$
\begin{aligned}
& \frac{1-\cos (x)}{1-\cos (x)} \cdot \frac{1-\cos (x)}{\sin (x)}+\frac{\frac{\sin (x)}{1-\cos (x)} \cdot \frac{\sin (x)}{\sin (x)}}{\frac{[1-\cos (x)]^{2}+\sin ^{2}(x)}{(1-\cos (x))(\sin (x))}=\frac{1-2 \cos (x)+\cos ^{2}(x)+\sin ^{2}(x)}{(1-\cos (x)) \sin (x)}=1}=2-2 \cos x \\
& =\frac{2(1-\cos (x))}{1-\cos (x) \sin (x)}=2 \cdot\left(\frac{1}{\sin (x))=2 \cdot \csc (x)}\right.
\end{aligned}
$$

11. Rewrite as an algebraic expression of x .

start here:

$\sin ^{-1}(x)$ is an angle whose $\frac{\text { opposite side }}{\text { hypotenuse }}=\frac{x}{1}$

12. Find all solutions.
$\frac{4 \pi}{6}=\frac{2 \pi}{3}$

(1)

$$
\text { a) } 2 \sin (3 \theta)+1=0
$$

$$
\sin (3 \theta)=\frac{-1}{2} \quad \text { so } \quad 3 \theta=-\frac{\pi}{6} \quad \text { or } \quad 3 \theta=\frac{7 \pi}{6}
$$

$$
\begin{array}{lll}
\begin{array}{l}
\text { now } \\
\text { add } \\
2 \pi k
\end{array} & 3 \theta=\frac{-\pi}{6}+2 \pi k & \text { or } \\
\theta & 3 \theta=\frac{7 \pi}{6}+2 \pi k \\
& \theta=\frac{\pi}{18}+\frac{2}{3} \pi k & \text { or }
\end{array} \theta=\frac{7 \pi}{18}+\frac{2}{3} \pi k \quad \$
$$

b) $2 \sin (\theta) \cos (\theta)-\cos (\theta)=0$

$$
\text { A } S \quad S \Rightarrow \text { check supplementary }
$$

13. Solve for all possible triangles: $A=15^{\circ}, a=18, b=34$

$$
C=180-15-29.2=134.8^{\circ}
$$

$$
c=\frac{18}{\sin 15} \cdot \sin 134.8=49.34
$$

$$
\frac{\sin 134.8}{c}=\frac{\sin 15}{18}
$$

$180-29.2=159.8^{\circ}$
Since $159.8^{\circ}+15^{\circ}<180$
this is compatible this
triage exists.
$B=159.8$

$$
\begin{aligned}
& c=180-15-159,8=5.2^{\circ} \\
& \frac{c}{\sin (5,2)}=\frac{18}{\sin (15)} \\
& c=\frac{18}{\sin (15)} \times \sin (5,2)=6,3
\end{aligned}
$$

or

14. A pilot measures the angle of depression to two ships in the water in front of the plane as 15° and 25° respectively. If the pilot is flying at an altitude of 20,000 feet, find the distance between the two ships. Draw a picture.

$$
\begin{aligned}
& \text { Right } \Delta \text { Trig. } \\
& \cos (65)=\frac{20,000}{B}, B=\frac{20000}{\cos 65}
\end{aligned}
$$

$180-90-65$
$90-65=25$

$$
x=\frac{B}{\sin (5)} \cdot \sin 10
$$

$$
x=94,287
$$

15. Match the equation to the graph (Each one has a place...)
a) $\cos (x)$
b) $-3 \cos (x)$
c) $2 \sin (-x)$
d) $\cos (3 x)-1$
e) $4 \cos (2 x)$
f) $4 \cos \left(\frac{1}{2} x\right)$
g) $2 \sin (x)$
h) $\cos (3 x)+1$

