1. Simplify each expression.

a) $(4y)^{-1}(3xz^0)^2$

b)
$$\left(\frac{3}{x}\right)^2 \left(\frac{2}{x}\right)^{-3}$$

2. Find the domain of the given function.

$$f(x) = \frac{3}{\sqrt{4-x}}$$

$$g(x) = 5$$

- 3. Write an equation of the line that has the given characteristics.
 - a) Passes through points (-1, 4) and (2, 3)

b) Passes through points (7,-5) and (7,3)

c) Line, parallel to $y = \frac{1}{3}x + 2$ and passes through the point (0, 1)

4. Find all solutions.

a) $4x^2 - 5x - 6 = 0$

b)
$$x^3 + 2x^2 + x = 0$$

5. Use these functions for the following questions:

$$f(x) = 2x + 1$$
$$g(x) = x^2 + 3x - 1$$

a) Find the function $f \circ f$

b) Find the function $g \circ f$

6. Find the inverse function of f.

$$f(x) = \frac{5}{3x^3 - 1}$$

7. Write the expression below as the logarithm base **c** of a single number.

$$\log_c(5) - \frac{1}{2}\log_c(25) + 2\log_c(3)$$

8. Find the solution. (Solve for the variable first, then grab a calculator) a) $e^{3x} = 15$

b)
$$3^{4x} = 30$$

c)
$$e^{3x+1} = 5(e^{3x+1} - 8)$$

d)
$$\log_2(x) + \log_2(x+2) = \log_2(24)$$

9. Modeling

a) The number N of bacteria in a culture follows the exponential growth model $N = Ae^{kt}$, where t is the time in hours. If the initial population is 50 and 6 hours later N = 300, when will N = 1000

b) The population p of a species of bird t years after it is introduced into a new habitat is given by:

$$p = \frac{3500}{1 + 4e^{-t/3}}$$

1) Determine the population size that was introduced into the habitat.

2) After how many years will the population be 2400?

10. Verify the following identities

a) $\cos(x)(\sec(x) + 2\sin(x)) = 1 + \sin(2x)$

b)
$$\frac{1 - \cos(x)}{\sin(x)} + \frac{\sin(x)}{1 - \cos(x)} = 2\csc(x)$$

11. Rewrite as an algebraic expression of **x**.

 $\cos(\sin^{-1}(x))$

12. Find all solutions.

a) $2\sin(3\theta) + 1 = 0$

b) $2\sin(\theta)\cos(\theta) - \cos(\theta) = 0$

13. Solve for all possible triangles: $A = 15^{\circ}$, a = 18, b = 34

14. A pilot measures the angle of depression to two ships in the water in front of the plane as 15° and 25° respectively. If the pilot is flying at an altitude of 20,000 feet, find the distance between the two ships. Draw a picture.

15. Match the equation to the graph (Each one has a place...) a) $\cos(x)$

b) $-3\cos(x)$

c) $2\sin(-x)$

d) $\cos(3x) - 1$

e) $4\cos(2x)$

f) $4\cos(\frac{1}{2}x)$

g) $2\sin(x)$

h) $\cos(3x) + 1$

EXTRA WORK SPACE.

Formula Sheet

$$\sin(A + B) = \sin(A)\cos(B) + \sin(B)\cos(A)$$
$$\sin(A - B) = \sin(A)\cos(B) - \sin(B)\cos(A)$$
$$\cos(A + B) = \cos(A)\cos(B) - \sin(A)\sin(B)$$
$$\cos(A - B) = \cos(A)\cos(B) + \sin(A)\sin(B)$$

And as an application of these formulas...

$$\sin(2A) = 2\sin(A)\cos(A)$$
$$\cos(2A) = \cos^2(A) - \sin^2(A)$$

Also:

$$\frac{\sin(A)}{a} = \frac{\sin(B)}{b} = \frac{\sin(C)}{c}$$
$$c^2 = a^2 + b^2 - 2ab\cos(C)$$

