1. Simplify each expression.
a) $(4 y)^{-1}\left(3 x z^{0}\right)^{2}$
b) $\left(\frac{3}{x}\right)^{2}\left(\frac{2}{x}\right)^{-3}$
2. Find the domain of the given function.

$$
f(x)=\frac{3}{\sqrt{4-x}}
$$

$$
g(x)=5
$$

3. Write an equation of the line that has the given characteristics.
a) Passes through points $(-1,4)$ and $(2,3)$
b) Passes through points $(7,-5)$ and $(7,3)$
c) Line, parallel to $y=\frac{1}{3} x+2$ and passes through the point $(0,1)$
4. Find all solutions.
a) $4 x^{2}-5 x-6=0$
b) $x^{3}+2 x^{2}+x=0$
5. Use these functions for the following questions:

$$
\begin{gathered}
f(x)=2 x+1 \\
g(x)=x^{2}+3 x-1
\end{gathered}
$$

a) Find the function $f \circ f$
b) Find the function $g \circ f$
6. Find the inverse function of f.

$$
f(x)=\frac{5}{3 x^{3}-1}
$$

7. Write the expression below as the logarithm base c of a single number.

$$
\log _{c}(5)-\frac{1}{2} \log _{c}(25)+2 \log _{c}(3)
$$

8. Find the solution. (Solve for the variable first, then grab a calculator)
a) $e^{3 x}=15$
b) $3^{4 x}=30$
c) $e^{3 x+1}=5\left(e^{3 x+1}-8\right)$
d) $\log _{2}(x)+\log _{2}(x+2)=\log _{2}(24)$
9. Modeling
a) The number N of bacteria in a culture follows the exponential growth model $N=A e^{k t}$, where t is the time in hours. If the initial population is 50 and 6 hours later $N=300$, when will $N=1000$
b) The population p of a species of bird t years after it is introduced into a new habitat is given by:

$$
p=\frac{3500}{1+4 e^{-t / 3}}
$$

1) Determine the population size that was introduced into the habitat.
2) After how many years will the population be 2400 ?
10. Verify the following identities
a) $\cos (x)(\sec (x)+2 \sin (x))=1+\sin (2 x)$
b) $\frac{1-\cos (x)}{\sin (x)}+\frac{\sin (x)}{1-\cos (x)}=2 \csc (x)$
11. Rewrite as an algebraic expression of x .

$$
\cos \left(\sin ^{-1}(x)\right)
$$

12. Find all solutions.
a) $2 \sin (3 \theta)+1=0$
b) $2 \sin (\theta) \cos (\theta)-\cos (\theta)=0$
13. Solve for all possible triangles: $A=15^{\circ}, a=18, b=34$
14. A pilot measures the angle of depression to two ships in the water in front of the plane as 15° and 25° respectively. If the pilot is flying at an altitude of 20,000 feet, find the distance between the two ships. Draw a picture.
15. Match the equation to the graph (Each one has a place...)
a) $\cos (x)$
b) $-3 \cos (x)$
c) $2 \sin (-x)$
d) $\cos (3 x)-1$
e) $4 \cos (2 x)$
f) $4 \cos \left(\frac{1}{2} x\right)$
g) $2 \sin (x)$
h) $\cos (3 x)+1$

EXTRA WORK SPACE.

Formula Sheet

$$
\begin{aligned}
& \sin (A+B)=\sin (A) \cos (B)+\sin (B) \cos (A) \\
& \sin (A-B)=\sin (A) \cos (B)-\sin (B) \cos (A) \\
& \cos (A+B)=\cos (A) \cos (B)-\sin (A) \sin (B) \\
& \cos (A-B)=\cos (A) \cos (B)+\sin (A) \sin (B)
\end{aligned}
$$

And as an application of these formulas...

$$
\begin{gathered}
\sin (2 A)=2 \sin (A) \cos (A) \\
\cos (2 A)=\cos ^{2}(A)-\sin ^{2}(A)
\end{gathered}
$$

Also:

$$
\begin{gathered}
\frac{\sin (A)}{a}=\frac{\sin (B)}{b}=\frac{\sin (C)}{c} \\
c^{2}=a^{2}+b^{2}-2 a b \cos (C)
\end{gathered}
$$

