FRIDAY - week 2
Move Algebraic Equations is Expressions
(1)

$$
\begin{aligned}
& x(x-3)=54 \\
& x(x-3)-54=0 \\
& x^{2}-3 x-54=0 \\
& (x+6)(x-9)=0 \\
& x=-6 \\
& x=9
\end{aligned}
$$

x	$=54$
$x-3$	$=54$

Quadratic Type -

$$
\begin{gathered}
x^{2}-9 x+6 x-54=0 \\
x(x-9)+6(x-9)=0 \\
(x-9)(x+6)=0
\end{gathered}
$$

(2)
start

$$
\underbrace{\left\lvert\, \begin{array}{l}
-x^{2}+x \\
-x(x-1)
\end{array}\right.}_{\frac{x+1}{x+1} \left\lvert\, \frac{1}{x-1}-\frac{x}{x+1}-2=0\right.} \overbrace{\left(\frac{x}{x+1}\right)\left|\frac{x-1}{x-1}\right|}^{\frac{1}{x+1}}-\overbrace{2\left(\frac{(x-1)(x+1)}{(x-1)(x+1)}\right)}^{(x-1)(x+1)}=0
$$

common: product of all these denom $(x-1)(x+1)$ goal: get 5
(B)

$$
\begin{gathered}
\frac{x+1-x^{2}+x-2 x^{2}+2}{(x+1)(x-1)}=0 \\
\frac{-3 x^{2}+2 x+3}{(x+1)(x-1)}=0
\end{gathered}
$$

(c)
cross mull.

$$
\begin{aligned}
& \left.-3 x^{2}+2 x+3=0 \cdot(x+1)(x-1)\right) \\
& =0 \\
& x=\frac{-2 \pm \sqrt{4-4 \cdot(-3)(3)}}{2 \cdot(-3)} \\
& =\frac{-2 \pm \sqrt{40}}{-6} \\
& \text { Not possible } \\
& \text { to FActor } \\
& \text { FRACTIONS L ZERO } \\
& \frac{0}{1}=0, \frac{0}{6}=0, \frac{0}{2}=0
\end{aligned}
$$

$$
\begin{aligned}
& A=-3 \quad C=3 \\
& A C=-9
\end{aligned}
$$

(3)

$$
\left(\frac{x^{3} y^{5} z^{3} x^{-3}}{x^{5} y^{2} z^{2} y^{2}}\right)^{-4}=x^{r} \cdot y^{s} \cdot z^{t}
$$

$$
\begin{aligned}
& r=? \\
& s=? \\
& t=?
\end{aligned}
$$

(A)
$\left(x^{-5} y z\right)^{-4}$
(B)

$$
\begin{aligned}
& \left(x^{-5}\right)^{-4} y^{-4} z^{-4} \\
& x^{20} y^{-4} z^{-4}
\end{aligned}
$$

Simplifts
insich first
exporents plas nice ul $* \frac{1}{4} \div$

Building a polynomial up from its roots

Enter a quadratic polynomial which has roots at 13/16 and -8 .

$$
\begin{aligned}
&\left(x-\frac{13}{16}\right)(x-(-8)) \\
&\left(x-\frac{13}{16}\right)(x+8)=x^{2}+8 x-\frac{13}{16} x-8\left(\frac{13}{16}\right) \\
&=x^{2}+\left(8-\frac{13}{16}\right) x-\frac{13}{2}
\end{aligned}
$$

rIUVIEII 1Y. (1 point) Library/ Co $1 \perp$ egeutIdano/setA gebra_Us_UZ_Pro blemSolvingBusinessApp/32IntAlg_15_Functions_Review.pg

$$
\begin{aligned}
& g \circ f(4)=g(f(4))=g(0)=0 \\
& f \circ g(4)=f(g(4))=1
\end{aligned}
$$

The graph of f is shown in red, and the graph of g is shown in blue. Use the graphs to evaluate each quantity given below.
NOTE: If only a blue section of graph shows up, that means the red graph is behind it.
NOTE: Round your values to the closest integer.
a) $f(4)=\frac{0}{3}$ "f of $4^{\prime \prime}=$ height of graph of $f(x)$ above $x=4$
b) $g(4)=3$
c) $f(4)+g(4)=3$

Answers) submitted.

