Wed, week 4

- Review for Exam

MA 115 Exam 1(A) Name:

$\frac{x^{2}+y^{2}}{x^{2}-y^{2}}=\frac{1+1}{1-1} \quad$ 1. Simplify the expression:
(a) $6 y^{0}\left(3 y^{2}\right)^{-1}$
\uparrow mistake

$$
\begin{gathered}
\downarrow \cdot 1 \frac{1}{3 y^{2}}=\frac{2}{y^{2}}
\end{gathered}
$$

$$
\frac{x^{2}+y^{2}}{x^{2}-y^{2}}
$$

(b) $\frac{4^{2} b^{3} c^{-3}}{(2 a)^{3} b^{2} c^{0}}=\frac{4^{2} \cdot b^{3} \cdot b^{-2}}{2^{3} a^{3} \cdot c^{0} \cdot c^{3}}=\frac{\left(\partial^{2}\right)^{2} b}{2^{3} a^{3} c^{3}}=\frac{2^{4} \cdot b}{2^{3} \cdot a^{3} \cdot c^{3}}=\frac{2 b}{a^{3} c^{3}}$
(c) $\frac{(x+y)^{2}}{x^{2}-y^{2}}=\frac{(x+y) \cdot(x+y)}{\text { rewrite }}=\frac{x+y}{x-y}$
diff. of \square 's
2. Completely factor the polynomial:
(a) $3 x^{2}+7 x-6$

Tri-nomial, deg. 2 (quadratic)

$$
A C=-18 \quad\left(3 x^{2}+9 x-2 x-6\right)
$$

$\pm \quad 1,18$
2,9

$$
3 x(x+3)-2(x+3)
$$

$$
\begin{aligned}
& 3 x A-2 A=A(3 x-2) \\
\leftarrow & (x+3=A)
\end{aligned}
$$

$$
(x+3)(3 x-2)
$$

$$
\leftarrow(x+3=A)
$$

(b) $x^{3}-6 x^{2}-4 x+24$

$$
\begin{aligned}
& 4 \text {-terms ... think grouping } \\
& \qquad \begin{aligned}
& x^{2}(x-6)-4(x-6) \\
&\left(x^{2}-4\right)(x-6) \text { keep going! } \\
& \text { diff. } 1 \text { ロ's } \\
&(x-2)(x+2)(x-6)
\end{aligned}
\end{aligned}
$$

More Factoring:

$$
\left(s^{2}+4 s t\right)+7 s+28 t
$$

4 pieces...try grouping

$$
s(s+4 t)+7(s+4 t)=(s+4 t)(s+7)
$$

3. Find all solutions to the equations:
(a) $x^{6}-7 x^{3}+6=0$
(1) $\frac{A C=6}{1+6} \quad x^{6}-x^{3}-6 x^{3}+6=0$
degree 6, trinomial

$$
\begin{aligned}
& \text { Lefter in } \\
& \text { quadratic-type } \\
& \qquad\left(a w^{2}+b w+c=0\right) \\
& \quad\left(\begin{array}{l}
\text { factor or }
\end{array} \quad Q, F .\right.
\end{aligned}
$$

$$
x^{3}\left(x^{3}-1\right)-6\left(x^{3}-1\right)=0
$$

$$
\left(x^{3}-6\right)\left(x^{3}-1\right)=0
$$

$$
x=\sqrt[3]{6}, \sqrt[3]{1}
$$

$$
x=\sqrt[3]{6}, 1
$$

$$
\text { NOTE: NO }+/ \text { w/ odd routs. }
$$

(b) $x-5=4 \sqrt{x}$
see $\times \frac{1}{2} \sqrt{x} \ldots$ isolate the radical $\frac{1}{2}$ square
squaring: $(x-5)^{2}=4^{2} x$

$$
\begin{array}{lll}
x^{2}-10 x+25=16 x & \cdots & 0 \text { is special } \\
x^{2}-26 x+25=0 & \text { - check these- } & x=25 \\
(x-25)(x-1)=0 & \underbrace{x=1}_{1-5=4 \sqrt{1}}, 25 &
\end{array}
$$

(c) $\sqrt[3]{2 x+3}+1=0$

Isolate the radicals then cube

$$
\begin{aligned}
(\sqrt[3]{2 x+3})^{3} & =(-1)^{3} \\
2 x+3 & =-1 \\
x & =-2
\end{aligned}
$$

\uparrow
4. Find the Domain of the given functions:
(a) $f(x)=13 \quad(-\infty, \infty)$
constant

- doesnit depend on x _
(b) $f(x)=\frac{1}{x^{2}-3 x} \leftarrow$ cant be 0

1. Set it equal to 0 : $x^{2}-3 x=0$

$$
\begin{aligned}
& x(x-3)=0 \\
& x=0, x=3
\end{aligned}
$$

(c) $f(x)=\sqrt{4-x}$

$$
\text { set } \quad 4-x \geqslant 0 \quad[4, \infty) \quad \text { interval not }
$$

$$
4 \geqslant x
$$

$$
\{x \mid x \geqslant 4\}
$$

set notation
5. Write an equation for a line the satisfies the given characteristics:
(a) passes through the points $(5,2)$ and $(3,3)$

Need:
slope ! point

$$
m=\frac{\text { rise }}{\text { run }}=\frac{\Delta y}{\Delta x}=\frac{3-z}{3-5}=\frac{1}{-2}
$$

$$
\left\{(x, y) \left\lvert\, y=-\frac{1}{2} x+\frac{9}{2}\right.\right\}
$$

$$
y-3=-\frac{1}{2}(x-3) \text { or } y=-\frac{1}{2} x+\frac{3}{2}+3 \Rightarrow y=-\frac{1}{2} x+\frac{9}{2}
$$

$y-3=-\frac{1}{2} x+\frac{3}{2}$
passes through the points $(-3,2)$ and $(-3,7)$

$$
\begin{gathered}
m=\frac{7-2}{-3-(-3)}=\frac{5}{0} \text { undefined slope } \Rightarrow \text { vertical line. } \\
x=-3 \\
\text { Line }=\{(x, y) \mid x=-3\}
\end{gathered}
$$

(c) passes through (3,-2) perpendicular to $y=-\frac{1}{2} x-6$

1-shpe \Rightarrow negative recip:
since $m=-\frac{1}{2}, m_{\perp}=2$

$$
\begin{gathered}
y-(-2)=2(x-3) \\
y+2=2(x-3)
\end{gathered}
$$

6. Find the following compositions of:

$$
f(x)=x^{2}-3 x+4 \quad \text { and } \quad g(x)=x-3
$$

(a) $f \circ g$
(b) $g \circ g$
7. For each function find its inverse:
(a) $f(x)=\sqrt[3]{x+5}$
(b) $f(x)=\frac{3 x+2}{x-5}$

WeBWork:
The due dates will be pushed back - Long Div. (Next thing due)

- Rad. (Deg. (much later)

