Wed, Week 4

· Review for Exam

•

Name:

(a)
$$6y^{0}(3y^{2})^{-1}$$

$$0.1 \frac{1}{3y^{2}} = \frac{2}{y^{2}}$$

$$\frac{x_3 - A_5}{x_3 + A_5}$$

(c)
$$\frac{(x+y)^2}{x^2-y^2}$$
 Tewrite diff. $4 \square s$

$$\frac{(x+y)\cdot(x+y)}{(x-y)\cdot(x+y)} = \boxed{\frac{x+y}{x-y}}$$

2. Completely factor the polynomial:

(a)
$$3x^2 + 7x - 6$$

tri-nomial, deg. 2 (quadratic)

$$(3x^{2} + 9x - 2x - 6)$$

$$3\times A - 2A = A(3x-2)$$

(b)
$$x^3 - 6x^2 - 4x + 24$$

4 - terms ... think grouping

$$x^{2}(x-6)-4(x-6)$$

More Factoring;

looks bad b/c mull, variables, but ok, b/c grouping

4 pieces ... try grouping

$$S(S+4t)+7(S+4t) = (S+4t)(S+7)$$

ons:
(i)
$$AC=6$$
 $x^{b} - x - 6x + 6 = 0$
 $x^{3}(x^{3}-1) - 6(x^{3}-1) = 0$
 $(x^{3}-6)(x^{3}-1) = 0$
 $x = \sqrt[3]{6}, 1$
 $x = \sqrt[3]{6}, 1$
No TE; No +/ w/ odd routs

(b)
$$x-5=4\sqrt{x}$$

See $x \neq \sqrt{x}$... isolate the radical $\frac{1}{2}$ square

Squaring: $(x-5)^2=4^2x$
 $x^2-10x+25=16x$... 0 is special

 $x^2-26x+25=0$
 $x^2-26x+25=0$
 $x=1, 25$
 $(x-25)(x-1)=0$
 $x=1$

(c)
$$\sqrt[3]{2x+3}+1=0$$

Isolate the radicals then cube
$$\left(\sqrt[3]{3x+3}\right)=\left(-1\right)^{3}$$

$$2x+3=-1$$

$$x=-2$$

4. Find the Domain of the given functions:

(a)
$$f(x) = 13$$
 $(-\infty, \infty)$

Constant

doesn't depend an \times

(b)
$$f(x) = \frac{1}{x^2 - 3x} \leftarrow c$$
 and be 0

(co,0) $v(0,3)v(3,0)$

(b) $f(x) = \frac{1}{x^2 - 3x} \leftarrow c$ and 0

(co,0) $v(0,3)v(3,0)$

(c

set
$$4-x \geqslant 0$$
 [4,00) interval not $4 \geqslant x$ $\{x \mid x \geqslant 4\}$ set notation

5. Write an equation for a line the satisfies the given characteristics:

(a) passes through the points
$$(5,2)$$
 and $(3,3)$

$$M = \frac{r_1 \Re}{r_2 u_2} = \frac{49}{4 \Re} = \frac{3-2}{3-5} = \frac{1}{-2}$$

$$y - 3 = -\frac{1}{2}(x - 3)$$
 or $y = -\frac{1}{2}x + \frac{3}{2} + 3 \Rightarrow y = -\frac{1}{2}x + \frac{9}{2}$

$$y = -\frac{1}{2}x + \frac{3}{2} + 3 \Rightarrow y = \frac{1}{2}$$

$$M = \frac{7-2}{-3-(-3)} = \frac{5}{0}$$

$$M = \frac{7-2}{-3-(-3)} = \frac{5}{0} \quad \text{undefined slope} \Rightarrow \text{Vertical line.}$$

$$X = -3$$

$$\text{Lin} = \frac{1}{2}(x,y) | x = -3\frac{7}{2}$$

(c) passes through (3,-2) perpendicular to $y = -\frac{1}{2}x - 6$

I - slipe
$$\Rightarrow$$
 regative recip;
since $m = -\frac{1}{2}$, $m_{\perp} = 2$

$$A + 9 = 9(x-3)$$

$$A - (-9/2 - 9(x-3))$$

$$f(x) = x^2 - 3x + 4$$
 and $g(x) = x - 3$

$$q(x) = x - 3$$

(a)
$$f \circ g$$

(b)
$$g \circ g$$

7. For each function find its inverse:

(a)
$$f(x) = \sqrt[3]{x+5}$$

(b)
$$f(x) = \frac{3x+2}{x-5}$$

WeBWorle:

The due dates will be pushed back - Long Div. (Next thing due)
- Rad. (Deg. (much later)