thursday - week 6
Logarithmic $\frac{1}{4}$ Exponential Equations is Expressions - Ch. 6

Exp. Growth

Logarithmic Growth
reflections about line $y=x$

$$
\underline{\text { Def'n: }} \quad \log _{a} x=y \xrightarrow{\text { means }} \quad a^{y}=x
$$

Ex.

$$
\begin{aligned}
& \log _{2} 8=y \text { means } 2_{11}^{y}=8 \quad \Rightarrow \quad y=3 \\
& \partial \cdot 2 \cdot . \partial=8
\end{aligned}
$$

Logarithms are just exponents

PROPERTIES OF WAS \& EXPONENTIALS

How does one mattematizion break -y w/ another?

$$
\begin{aligned}
& \ln \left(I^{\prime} m\right)-\ln \left(Y_{0 u}\right) \\
& =\ln \left(\frac{I_{m}}{y_{0 n}}\right)
\end{aligned}
$$

- Property 1 :
start

$$
\ln _{e}(A-B)=5
$$

apply
donn

$$
e^{S}=A \cdot B
$$

Property 3 (something

$$
\ln \left(x^{n}\right)=5
$$

$$
\text { donn: } e^{S}=x^{n}
$$

apply n-th root to both

$$
s / n=\ln x
$$

$$
e^{s\left(\frac{1}{n}\right)}=\left(e^{s}\right)^{1 / n}=\left(x^{n}\right)^{1 / n}=x^{n / n}=x
$$

${ }^{\prime 1} e^{s / n}=x$
\log both

$$
\underbrace{\left(e^{5 / n}\right)}_{k i l l}=\ln x
$$

$$
s=n \cdot \ln x
$$

$$
\ln \left(x^{n}\right)=s=n \cdot \ln x
$$

$$
\begin{aligned}
& \text { next, give names to., then apply def'n, So combined } \\
& \ln A=\alpha \quad e^{\alpha}=A \\
& \ln B=\beta \longrightarrow e^{\beta}=B \\
& \downarrow \quad e^{s}=A \cdot B=e^{\alpha} \cdot e^{\beta}=e^{\alpha+\beta} \\
& \begin{aligned}
& e^{s}=e^{\alpha+\beta} \\
& \text { hit wi } \ln (1-1 \text { prperth }) \\
& \Rightarrow S=\alpha+\beta
\end{aligned} \\
& \begin{aligned}
& \\
& \text { hit }\left.\omega\right|^{S}=e^{\alpha+\beta} \\
& \Rightarrow S(1-1 \text { prpert }) \\
& S=\alpha+\beta
\end{aligned} \\
& \begin{array}{rl}
& e^{S}=e^{\alpha+\beta} \\
\text { hit wi } & \text { (} 1-1 \text { prpenth }) \\
\Rightarrow S & S+\beta
\end{array} \\
& \ln (A, B)=S=\alpha+\beta=\ln A+\ln B
\end{aligned}
$$

Ex
Ex
$f(x)=10^{-(x-4)}$, Horiz. Ass?, Range, y-int?
$y=0$ set of all
heights obtained by graph

$$
=\frac{1}{10^{(x-4)}}
$$

$$
=\frac{1}{10^{x} \cdot 10^{-4}}
$$

$$
=\frac{1-10^{4}}{10^{x}}=\frac{10^{4}}{10^{x}}
$$

x	0	$x=-1$	$x=-2$	$x=1$
$f(x)$	$\frac{10^{4}}{10^{4}}=10^{4}$	$\frac{10^{4}}{10^{-1}}=10^{5}$		$\frac{10^{4}}{10^{1}}=10^{3}$

$$
\begin{array}{r}
\text { Range' }(0, \infty) \cdot \underbrace{y}=1=\frac{10^{4}}{10^{x}} \Rightarrow 10^{x}=10^{4} \\
\log _{10}\left(10^{x}\right)=\log _{10}\left(10^{4}\right) \\
x=4
\end{array}
$$

$$
y \text {-int: } x=0
$$

plug in $x=0 \sim \frac{10^{4}}{10^{\circ}}=10^{4}$

