1. Find all vertical and horizontal asymptotes:
(a) $\frac{52}{x^{2}-5 x+6}$

Horizontal Asymptotes:
1500 degree is less than x^{2} degree, so:
$y=0$
Vertical Asymptotes:
$x^{2}-5 x+6=0$
$(x-3)(x-2)=0$
$x=3, x=2$
(b) $\frac{x^{2}-2 x-3}{2 x^{2}-5 x-3}$

Horizontal Asymptotes:
x^{2} degree is equal to $2 x^{2}$ degree, so:
$y=\frac{1}{2}$
$\frac{\text { Vertical Asymptotes: }}{2 x^{2}-5 x-3=0}$
$2 x^{2}-6 x+x-3=0$
$2 x(x-3)+1(x-3)=0$
$(2 x+1)(x-3)=0$
However $(x-3)$ is also a factor of the numerator so...
$x=-\frac{1}{2}$ and NOT $x=3$
(c) $\frac{10+x^{3}-7 x^{2}}{x^{3}+11 x^{2}+10 x}$

Horizontal Asymptotes:
x^{3} degree is equal to x^{3} degree, so:
$y=\frac{1}{1}=1$
$y=1$
Vertical Asymptotes:
$x^{3}+11 x^{2}+10 x=0$
$x\left(x^{2}+11 x+10\right)=0$
$x(x+10)(x+1)=0$
However the Numerator cannot be factored so...
$x=-10,-1,0$
2. Completely factor the polynomial:

$$
\begin{aligned}
& x^{4}+9 x^{3}+22 x^{2}-32 \\
& x+4) \begin{array}{r}
x^{3}+5 x^{2}+2 x-8 \\
\frac{x^{4}+9 x^{3}+22 x^{2}}{-x^{4}-4 x^{3}} \\
5 x^{3}+22 x^{2} \\
\frac{-5 x^{3}-20 x^{2}}{2 x^{2}} \\
\frac{-2 x^{2}-8 x}{0} \\
\frac{-8 x-32}{8 x+32}
\end{array}
\end{aligned}
$$

$$
x+4 \begin{array}{r}
\frac{x^{2}+x-2}{} \begin{array}{r}
x^{3}+5 x^{2}+2 x-8 \\
-x^{3}-4 x^{2}
\end{array} \\
\begin{array}{r}
x^{2}+2 x \\
-x^{2}-4 x \\
-2 x-8 \\
\quad 2 x+8
\end{array}
\end{array}
$$

$$
x-1) \frac{x-2}{x^{2}-3 x-2}
$$

$$
\frac{-x^{2}+x}{-2 x}-2
$$

$$
\begin{array}{r}
2 x-2 \\
-4
\end{array}
$$

$$
=(x-1)(x+2)(x+4)(x+4)
$$

3. Graph the functions, $y=a^{x}$ and $y=\log _{a} x$ on the same graph. Label any intercepts and give the domain and range of both. (If intercepts don't exist, write DNE)

Details about each graph

$$
\underline{y=a^{x}} \quad \underline{y=\log _{a} x}
$$

$$
\text { Domain: } \quad \text { All Reals } \quad(0, \infty)
$$

Range: $\quad(0, \infty) \quad$ All Reals

4. Fill in the blank:
(a) $\ln (A B)=\ln (A)+\ln (B)$
(b) $\ln \left(\frac{A}{B}\right)=\ln (A)-\ln (B)$
(c) $\ln \left(e^{x}\right)=x$
(d) $e^{\ln (x)}=x$
5. Find the solution. (You should solve for the variable first, then grab a calculator)
(a) $e^{5 x}=15$
$\ln \left(e^{5 x}\right)=\ln (15)$
$5 x \ln (e)=\ln (15)$
$5 x=\ln (15)$
$x=\frac{\ln (15)}{5}$
$x \approx .542$
(b) $5^{3 x}=9$
$\ln \left(5^{3 x}\right)=\ln (9)$
$3 x \ln (5)=\ln (9)$
$x=\frac{\ln (9)}{3 \ln (5)}$
$x \approx .455$
(c) $3 e^{4-x}=8$
$e^{4-x}=\frac{8}{3}$
$\ln \left(e^{4-x}\right)=\ln \left(\frac{8}{3}\right)$
$(4-x) \ln (e)=\ln \left(\frac{8}{3}\right)$
$4-x=\ln \left(\frac{8}{3}\right)$
$x=4-\ln \left(\frac{8}{3}\right)$
$x \approx 3.02$
(d) $4\left(6+e^{2 x}\right)=27$
$\left(6+e^{2 x}\right)=\frac{27}{4}$
$e^{2 x}=\left(\frac{27}{4}-6\right)$
$\ln \left(e^{2 x}\right)=\ln \left(\left(\frac{3}{4}\right)\right)$
$2 x=\ln \left(\frac{3}{4}\right)$
$\begin{aligned} & x=\frac{\ln \left(\frac{3}{4}\right)}{2} \\ & x \approx-144\end{aligned}$
$x \approx-.144$
(e) $2 \log (x)=\log (3)+\log \left(\frac{11}{3} x+4\right)$
$\log \left(x^{2}\right)=\log (3)+\log \left(\frac{11}{3} x+4\right)$
$\log \left(x^{2}\right)=\log \left(3\left(\frac{11}{4} x+4\right)\right)$
$\log \left(x^{2}\right)=\log (11 x+12)$
$10^{\log \left(x^{2}\right)}=10^{\log (11 x+12)}$
$x^{2}=11 x+12$
$x^{2}-11 x-12=0$
$(x-12)(x+1)=0$
$x=12, x=-1$
Check Solutions:
Can't have negative numbers... so $x \neq-1$
$x=12$
(f) $\log _{5} x+\log _{5}(x+5)=\log _{5} 36$
$\log _{5}(x(x+5))=\log _{5} 36$
$\log _{5}\left(x^{2}+5 x\right)=\log _{5} 36$
$5^{\log _{5}\left(x^{2}+5 x\right)}=5^{\log _{5} 36}$
$x^{2}+5 x=36$
$x^{2}+5 x-36=0$
$(x+9)(x-4)=0$
$x=-9, x=4$
Check Solutions:
Can't have negative numbers... so $x \neq-9$
$x=4$
6. Modeling. Answer the following:
(a) The number N of bacteria in a culture follows the exponential growth model, $N=A e^{k t}$, where t is the time in hours. If the initial population is 400 and 3 hours later $\mathrm{N}=1200$, when will $\mathrm{N}=2000$?

Figure out A: (So plug in initial value at $\mathrm{t}=0$.)

$$
\begin{aligned}
& 400=A e^{0 k} \\
& A=400
\end{aligned}
$$

Next find the value of K by plugging in $\mathrm{t}=3$.

$$
\begin{aligned}
& 1200=400 e^{3 k} \\
& 3=e^{3 k} \\
& \ln (3)=\ln \left(e^{3 k}\right) \\
& 3 k \ln (e)=\ln (3) \\
& k=\frac{\ln (3)}{3} \approx .366
\end{aligned}
$$

Now that we have the constants, we can find out when $\mathrm{N}=2000$:

$$
\begin{aligned}
& 2000=400 e^{.366 t} \\
& 5=e^{366 t} \\
& \ln (5)=\ln \left(e^{.366 t}\right) \\
& \ln (5)=(.366 t) \ln (e) \\
& .366 t=\ln (5) \\
& t=\frac{\ln (5)}{.366} \\
& t \approx 4.39 \text { hours }
\end{aligned}
$$

(b) The population(p) of a mythical Badgermole, t years after it is introduced into a new habitat is given by:

$$
p=\frac{4000}{1+3 e^{-t / 4}}
$$

1. Determine the population size that was introduced into the habitat.
2. After how many years will the population be 2400 ?
3. Plug in 0 for t

$$
p=\frac{4000}{1+3 e^{0 / 4}}
$$

$$
p=\frac{4000}{1+3 e^{0}}
$$

$$
p=\frac{4000}{1+3}
$$

$$
p=\frac{4000}{4}
$$

$$
p=1000
$$

2. Plug in 2400 for p
$2400=\frac{4000}{1+3 e^{-t / 4}}$
$2400\left(1+3 e^{-t / 4}\right)=4000$
$\left(1+3 e^{-t / 4}\right)=\frac{4000}{2400}$
$\left(1+3 e^{-t / 4}\right)=\frac{5}{3}$
$3 e^{-t / 4}=\frac{5}{3}-1$
$3 e^{-t / 4}=\frac{2}{3}$
$e^{-t / 4}=\frac{2}{15}$
$\ln \left(e^{-t / 4}\right)=\ln \left(\frac{2}{15}\right)$
$\frac{-t}{4} \ln (e)=\ln \left(\frac{2}{15}\right)$
$\frac{-t}{4}=\ln \left(\frac{2}{15}\right)$
$-t=4 \ln \left(\frac{2}{15}\right)$
$t=-4 \ln \left(\frac{2}{15}\right)$
$t \approx 8.06$ years
