1. Find all vertical and horizontal asymptotes:
(a) $\frac{52}{x^{2}-5 x+6}$
(b) $\frac{x^{2}-2 x-3}{2 x^{2}-5 x-3}$
(c) $\frac{10+x^{3}-7 x^{2}}{x^{3}+11 x^{2}+10 x}$
2. Completely factor the polynomial:

$$
x^{4}+9 x^{3}+22 x^{2}-32
$$

3. Graph the functions, $y=a^{x}$ and $y=\log _{a} x$ on the same graph. Label any intercepts and give the domain and range of both. (If intercepts don't exist, write DNE)

Details about each graph $\underline{y=a^{x}} \quad \underline{y=\log _{a} x}$

Domain:

Range:

Intercepts:
4. Fill in the blank:
(a) $\ln (A B)=$ \qquad
(b) $\ln \left(\frac{A}{B}\right)=$ \qquad
(c) $\ln \left(e^{x}\right)=$ \qquad
(d) $e^{\ln (x)}=$ \qquad
5. Find the solution. (You should solve for the variable first, then grab a calculator)
(a) $e^{5 x}=15$
(b) $5^{3 x}=9$
(c) $3 e^{4-x}=8$
(d) $4\left(6+e^{2 x}\right)=27$
(e) $2 \log (x)=\log (3)+\log \left(\frac{11}{3} x+4\right)$
(f) $\log _{5} x+\log _{5}(x+5)=\log _{5} 36$
6. Modeling. Answer the following:
(a) The number N of bacteria in a culture follows the exponential growth model, $N=A e^{k t}$, where t is the time in hours. If the initial population is 400 and 3 hours later $\mathrm{N}=1200$, when will $\mathrm{N}=2000$?
(b) The population (p) of a mythical Badgermole, t years after it is introduced into a new habitat is given by:

$$
p=\frac{4000}{1+3 e^{-t / 4}}
$$

1. Determine the population size that was introduced into the habitat.
2. After how many years will the population be 2400 ?
