1. Find all vertical and horizontal asymptotes:
(a) $\frac{52}{x^{2}-5 x+6}$
degree below $>$ degree above \Rightarrow Horiz. As, @ $0: y=0$
(b) $\frac{x^{2}-2 x-3}{2 x^{2}-5 x-3}$
degree below $=$ degas above \Rightarrow Horiz.Ass
©
Rates of
(c) $\frac{10+x^{3}-7 x^{2}}{x^{3}+11 x^{2}+10 x}$

$$
\text { HA.@ } @=1
$$

2. Completely factor the polynomial:

$$
x^{4}+9 x^{3}+22 x^{2}-32
$$

1 st $^{\text {st }}$ find a zero: $x=a$ sit sub a in gives O
Fact: look for $\pm \frac{p}{q}$ sit. $\quad \begin{aligned} p & =\text { factor of } 32 \\ q & =\text { factor of }\end{aligned}$

$$
x=1 \Rightarrow 1^{4}+9(1)+2 d-32=0
$$

and Long Division:

$$
\frac{x^{3}+10 x^{2}+32 x+32}{\sqrt{x^{4}+9 x^{3}+22 x^{2}+0 x-32}}
$$

$$
\frac{-\left(x^{4}-x^{3}\right)}{10 x^{3}}
$$

$$
\begin{array}{r}
-\frac{\left(10 x^{3}-10 x^{2}\right)}{32 x^{2}}-\frac{\left(32 x^{2}-32 x\right)}{32 x-32} \\
\frac{32 x-32}{0}
\end{array}
$$

Now we try to factor, "or find another zero:

$$
\begin{aligned}
& P(1)=1+10+32+32 \neq 0 \\
& P(-1)=-1+10-32+31 \neq 0 \\
& P(2)=8+40+64+32=0
\end{aligned}
$$

$$
P(2)=8+40+64+32=0 \quad \text { (} 11 \quad x-(-2)=x+2 \text { a factor of }
$$

$$
x^{2}+8 x+16 \rightarrow(x+4)^{2}
$$

$$
\begin{array}{r}
-\frac{x^{3}+10 x^{2}+32 x+32}{} \\
-\frac{\left(x^{3}+2 x^{2}\right)}{8 x^{2}} \\
-\frac{\left(8 x^{2}+16 x\right)}{16 x+32} \\
\frac{16 x+32}{2}
\end{array}
$$

$$
(x-1)(x+2)(x+4)^{2}
$$

3. Graph the functions, $y=a^{x}$ and $y=\log _{a} x$ on the same graph. Label any intercepts and give the domain and range of both. (If intercepts don't exist, write DNE)

4. Fill in the blank:
(a) $\ln (A B)=$ \qquad
(b) $\ln \left(\frac{A}{B}\right)=$ \qquad
(c) $\ln \left(e^{x}\right)=$ \qquad
(d) $e^{\ln (x)}=$ \qquad
5. Find the solution. (You should solve for the variable first, then grab a calculator)
(a) $e^{5 x}=15$
(b) $5^{3 x}=9$
(c) $3 e^{4-x}=8$

(d) $\frac{4\left(6+e^{2 x}\right)}{4}=\frac{27}{4}$
(work ortside-in)

$$
6+e^{2 x}=\frac{27}{4}
$$

$$
e^{2 x}=\frac{27}{4}-6=\frac{27}{4}-\frac{24}{4}=\frac{3}{4}
$$

$$
\ln \left(e^{2 x}\right)=\ln \left(\frac{3}{4}\right)
$$

$$
2 x=\ln \left(\frac{3}{4}\right)
$$

$$
x=\frac{\ln \left(\frac{3}{2}\right)}{2}
$$

(e) $2 \log (x)=\log (3)+\log \left(\frac{11}{3} x+4\right)$
(f) $\log _{5} x+\log _{5}(x+5)=\log _{5} 36$
6. Modeling. Answer the following:
(a) The number N of bacteria in a culture follows the exponential growth model, $N=A e^{k t}$, where t is the time in hours. If the initial population is 400 and 3 hours later $\mathrm{N}=1200$, when will $\mathrm{N}=2000$?
$\frac{\text { initial }}{\text { popratation means the number } N}$ when $t=0$

$$
\begin{aligned}
2000 & =A e^{k t}\left[\left[\ln ^{3}\right]\right] \cdot t \quad \text { solve fo } t \\
& =400 e^{\left(\frac{\ln 3}{3}\right) t} \\
& =\frac{2004 x}{4 \phi y}=e^{(3)}\left(\frac{\ln ^{3}}{3} t\right)
\end{aligned}
$$

- start $w /$ the question/ what is being asked -? \longrightarrow what is t when ? $N=2000$?
(1) $\quad N=400$ when $t=0 \Rightarrow 400=A e^{K(0}=A e^{D}=A_{11}=A$
(2) $N=1200$ when $t=3 \Rightarrow 1200=A e^{k \cdot 3}$ (use (1))

$$
\Rightarrow \quad 3=e^{3 k} \quad \ln 3=3 k
$$

$$
\text { determine } k
$$

given \qquad
(b) The population (p) of a mythical Badgermole, t years after it is introduced into a new habitat is given by:

$$
p=\frac{4000}{1+3 e^{-t / 4}}
$$

1. Determine the population size that was introduced into the habitat. what is p when $t=0$.
2. After how many years will the population be 2400? (What is t when $P=2480$)
(1) $\rho=\frac{4000}{1+3 e^{-0}}=1000$ (now update formula)
(2) $\frac{2400}{1}=\frac{4000}{1+3 e^{-t / 4}}$ solve for t
cross mut:

$$
240 x\left(1+3 e^{-t / 4}\right)=400 \phi
$$

$$
\because b 424
$$

$$
1+3 e^{-t / 4}=\frac{40}{24}
$$

-1

$$
\begin{aligned}
3 e^{-t / 4} & =\frac{40}{24}-\frac{24}{24}=\frac{16}{24}=\frac{2}{3} \\
e^{-t / 4} & =\frac{2}{9}
\end{aligned}
$$

$$
\left.\begin{array}{c}
\ln \left(e^{-t / 4}\right)=\ln (\partial / a) \\
-t / 4=\ln (\partial / a)=\ln (\partial)-\ln (a) \\
\operatorname{mnlt} .4 \\
t
\end{array}\right)=-4\left(\ln \left(\frac{\partial}{9}\right)\right)=
$$

个 Notice a typo in posted sol's

