a few basic algebra reminders

1. Find an equation of the line that satisfies the given conditions:
(a) passes through $(-1,-1)$ and $(3,7)$
(b) passes through $(7,2)$ and $(5,2)$
(c) passes through $(-1,3)$ and $(-1,5)$
(d) passes through $(-2,-6)$ and is parallel to $y=2 x+3$.
(e) passes through $(4,2)$ and is perpendicular to $y=2 x+3$.
2. Simplify the expression below (no negative exponents, no compound fractions).
(a)

$$
\left(\frac{3}{y}\right)^{3}\left(\frac{y^{2}}{4}\right)^{-2}
$$

(b)

$$
5 x^{-2}\left(-2 y^{0}\right)^{3}
$$

(c)

$$
\frac{\frac{2}{x+2}}{\frac{3}{x-2}}
$$

(d)

$$
\frac{\frac{x+4}{3}}{\sqrt{x^{2}+16}}
$$

3. Combine into a single logarithmic term.
(a)

$$
\ln (x+2)-\ln (x-1)
$$

(b)

$$
\ln (x+2)-\ln (x-1)+\ln (x+1)
$$

(c)

$$
\frac{1}{3} \ln x-\frac{1}{2} \ln y-2 \ln z
$$

4. Use the logarithm rules to "reverse" the process in $\# 3$.
(a)

$$
\ln \left(a^{2} b c^{3}\right)
$$

(b)

$$
\ln \left(a^{2}-b^{2}\right)
$$

(c)

$$
\ln \left(\frac{a^{2}+b^{2}}{a b}\right)
$$

