a few basic algebra reminders

1. Find an equation of the line that satisfies the given conditions:
(a) passes through $(-1,-1)$ and $(3,7)$

Answer: $y=2 x+1$.
(b) passes through $(7,2)$ and $(5,2)$

Answer: $y=2$.
(c) passes through $(-1,3)$ and $(-1,5)$

Answer: $x=-1$.
(d) passes through $(-2,-6)$ and is parallel to $y=2 x+3$.

Answer: $y=2 x-2$.
(e) passes through $(4,2)$ and is perpendicular to $y=2 x+3$.

Answer: $y=-\frac{1}{2} x+4$.
2. Simplify the expression below (no negative exponents, no compound fractions).
(a)

$$
\left(\frac{3}{y}\right)^{3}\left(\frac{y^{2}}{4}\right)^{-2}=\frac{3^{3}}{y^{3}} \cdot\left(\frac{4}{y^{2}}\right)^{2}=\frac{27}{y^{2}} \cdot \frac{16}{y^{4}}=\frac{432}{y^{7}}
$$

(b)

$$
5 x^{-2}\left(-2 y^{0}\right)^{3}=5\left(\frac{1}{x^{2}}\right)(-2)^{3}=\frac{5}{x^{2}}(-8)=-\frac{40}{x^{2}}
$$

(c)

$$
\frac{\frac{2}{x+2}}{\frac{3}{x-2}}=\frac{2}{x+2} \cdot \frac{x-2}{3}=\frac{2(x-2)}{3(x+2)}=\frac{2 x-4}{3 x+6}
$$

(d)

$$
\frac{\frac{x+4}{3}}{\sqrt{x^{2}+16}}=\frac{\frac{x+4}{3}}{\frac{\sqrt{x^{2}+16}}{1}}=\frac{x+4}{3} \cdot \frac{1}{\sqrt{x^{2}+16}}=\frac{x+4}{3 \sqrt{x^{2}+16}}
$$

3. Combine into a single logarithmic term.
(a)

$$
\ln (x+2)-\ln (x-1)=\ln \left(\frac{x+2}{x-1}\right)
$$

(b)
$\ln (x+2)-\ln (x-1)+\ln (x+1)=\ln \left(\frac{x+2}{x-1}\right)+\ln (x+1)=\ln \left(\frac{(x+2)(x+1)}{x-1}\right)$
(c)
$\frac{1}{3} \ln x-\frac{1}{2} \ln y-2 \ln z=\ln \left(x^{1 / 3}\right)-\ln \left(y^{1 / 2}\right)-\ln \left(z^{2}\right)=\ln \sqrt[3]{x}-\ln \sqrt{y}-\ln z^{2}=\ln \left(\frac{\sqrt[3]{x}}{z^{2} \sqrt{y}}\right)$
4. Use the logarithm rules to "reverse" the process in $\# 3$.
(a)

$$
\ln \left(a^{2} b c^{3}\right)=\ln \left(a^{2}\right)+\ln b+\ln \left(c^{3}\right)=2 \ln a+\ln b+3 \ln c
$$

(b)

$$
\ln \left(a^{2}-b^{2}\right)=\ln [(a+b)(a-b)]=\ln (a+b)+\ln (a-b)
$$

(c)

$$
\ln \left(\frac{a^{2}+b^{2}}{a b}\right)=\ln \left(a^{2}+b^{2}\right)-\ln a-\ln b
$$

