Friday - Week 1

Warm-up:

1. Find an equation of the line perpendicular to the segment connecting $(1,2)$ and $(6,10)$ which goes through the midpoint. This is the perpendicular bisector.
2. Verify your answer in Desmos with a graph.

Recall the midpoint of a segment with endpoints $\left(x_{1}, y_{1}\right) \frac{1}{4}\left(x_{2}, y_{2}\right)$
is
$\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
Slope of the Segment $=\frac{10-2}{6-1}=\frac{8}{5}$

$$
\begin{aligned}
& \text { Slope of the } \perp: \frac{-5}{8} \\
& \text { Midpoint: }\left(\frac{1+6}{2}, \frac{2+10}{2}\right)=\left(\frac{7}{2}, \frac{12}{2}\right) \\
& \text { Eq'n of }+ \text { bisector: } y-6=\frac{-5}{8}\left(x-\frac{7}{2}\right)
\end{aligned}
$$

Continue Review of the Basis
O. Rationalizing

1. functions
(a) domain
(b) composition/ evaluation
(c) even / odd

Typical Rationalizing Problems
Ratronaling the numerator.

$$
\frac{\frac{\sqrt{x}+\sqrt{y}}{x y} \cdot}{\sqrt{x}+\sqrt{y}} \cdot \frac{\overbrace{}^{\prime \prime}-\sqrt{y}}{\sqrt{x}-\sqrt{y}}=\frac{\sqrt{x \sqrt{x}}-\sqrt{x} \sqrt{y}+\sqrt{y} \sqrt{x}-\sqrt{y} \sqrt{y}}{x y(\sqrt{x}-\sqrt{y})}=\frac{x^{\prime}-y}{x y(\sqrt{x}-\sqrt{y})}
$$ doesn't work well with + or -

And speaking of cancellation $\cdot .$.

$$
\text { (If possible) } \frac{(x+y)^{2}}{(x y)\left(x^{2}+y^{2}\right)}=\frac{x^{2}+\dot{2} x y+y^{2}}{\left(x^{3} y+x y^{3}\right)}=\frac{2 x y+x^{2}+y^{2}}{x^{3} y+x y^{3}}
$$

Domain of functions

Cant dinge by 0 .
Def'n: $\frac{a}{b}=c$ means

$$
a=c b
$$

$\frac{5}{\theta}=C$ then $S=\underbrace{C-D}_{=0}$

$$
5=0
$$

Cant take the square root of negative.

$$
\sqrt{x}=n \quad \frac{1}{\&} \quad n \cdot n=x
$$

when you multiply a number by itself, the result is always positive

Ex

$$
f(x)=\frac{1}{x^{2}-25}
$$

domain: $\mathbb{R}-\{ \pm 5\}=(-\infty,-5) \cup(-5,5) \cup(5, \infty)$ think: cant \div bs θ
set $x^{2}-25=0$

$$
\begin{aligned}
& (x-5)(x+5)=0 \\
& x-5=0 \quad x=5 \\
& \sigma \quad x+5=0 \quad x=-5 \\
& x+5
\end{aligned}
$$

Ex $f(x)=\sqrt{3 x+9}$
domain:
think radicand must be \varnothing or greater.

$$
\begin{array}{r}
3 x+9 \geqslant 0 \\
3 x \geqslant-9 \\
x \geqslant-3
\end{array}
$$

$[-3, \infty)$

$$
g(x)=\sqrt{x^{2}-16}
$$

domain:

$$
x^{2}-16 \geqslant 0
$$

(1) set $x^{2}-16=0$

$$
x= \pm 4
$$

(2)

$$
(-\infty, 4] \cup[4, \infty)
$$

