Thurs. who 1
Algebra Renew:
Exponents:

$$
A^{m} A^{n}=A^{m+n}
$$

multiply like bases ... add exponents

$$
\text { base }=A
$$

Similar
Example

$$
(x+y)^{5}(x+y)^{3}=(x+y)^{8}
$$

$$
\sin ^{\prime}(x)^{\prime} \cdot(\cos (x))^{5} \cdot \sin ^{3}(x)=\sin ^{4}(x) \cos ^{5}(x)
$$

$$
\text { base }=\sin (x)
$$

$$
\frac{A^{m}}{A^{n}}=A^{m-n}
$$

dividing like bases ... subtract exponents

The reason?

$$
\frac{A^{m}}{A^{n}}=\frac{A^{m}}{1} \cdot \frac{1}{A^{n}}=\frac{A^{m}}{1} \cdot A^{-n}=A^{m-n}
$$

negative exponents ... invert and change sign

$$
\frac{5}{x^{3}}=5 x^{-3}
$$

divide by a fraction ... multiply by the reciprocal

$$
\text { breaking up fractions } \frac{5 x^{2}}{1+x^{2}} \neq \frac{5 x^{2}}{1}+\frac{5 x^{2}}{x^{2}}\| \| \text { but } \| \frac{1+x^{2}}{5 x^{2}}=\frac{1}{5 x^{2}}+\frac{x^{2}}{5 x^{2}}
$$

Fractional Exponents
Square Root of $x=\sqrt{x}$, notice when we multiply it by itself we get x back

$$
\begin{aligned}
& \sqrt{x} \cdot \sqrt{x}=x \\
& \| \\
& x^{\frac{1}{2}} x^{\frac{1}{2}}=x^{\prime}=x
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt[m]{x^{n}}=x^{n / m} \\
& \text { recall } \sqrt{x}=\sqrt[2]{x}=x^{1 / 2}
\end{aligned}
$$

Factoring is Fractional Exponents

$$
\begin{aligned}
& x^{2} y+x^{2} z=x^{2}(y+z) \\
& 3 / 2 y+x^{1 / 2} z=x^{1 / 2}\left(x^{3 / 2-1 / 2} y+x^{1 / 2-1 / 2} z\right)=x^{1 / 2}(x y+z)
\end{aligned}
$$

Expanding Binomials $\frac{1}{4}$ common Forms

$$
\begin{aligned}
(x+y)^{2} & =x^{2}+2 x y+y^{2} \mid(x-y)^{2}=x^{2}-\partial x y+y^{2} \\
(x+y)^{3} & =(x+y)(x+y)^{2}=(x+y)\left(x^{2}+\partial x y+y^{2}\right) \\
& =x\left(x^{2}+2 x y+y^{2}\right)+y\left(x^{2}+\partial x y+y^{2}\right) \\
& =x^{3}+2 x^{2} y+x y^{2}+x^{2} y+2 x y^{2}+y^{3}=x^{3}+3 x^{2} y+3 x y^{2}+y^{3} \\
(x-y)^{3} & =x^{3}-3 x^{2} y+3 x y^{2}-y^{3}
\end{aligned}
$$

Pascal's a tracks coefficients

$$
\begin{array}{l|l}
\text { Degree } & (x+y)^{4}=x^{4}+4 x^{3} y+6 x^{2} y^{2}+4 x^{1} y^{3}+y^{4} \\
\text { Sum is } \\
\text { constant } & (x-y)^{4}=x^{4}-4 x^{3} y+6 x^{2} y^{2}-4 x y^{3}+y^{4}
\end{array}
$$

Geometry
Cartesian Plane

$y=m x+b$

$$
\text { * } y-y_{1}=m\left(x-x_{1}\right)
$$

$\begin{aligned} & \text { slope formula: } \\ & \text { (isolate } m \text {) }\end{aligned} \frac{y-y_{1}}{x-x_{1}}=m$
perpendicular: negative parallel: same slope
common exercise.

Find an equation of a line perpendicular to the line between $(1,5)$ and $(2,-3)$ that goes through $(1,8)$.
(1) $m=\frac{5-(-3)}{1-2}=\frac{8}{-1}=-8$
(2) $y-y_{1}=m\left(x-x_{1}\right)$

$$
\begin{aligned}
& \underline{q}(1,8)-\uparrow \\
& y-8=-8(x-1)
\end{aligned}
$$

