MA161 WK 10 -----

Warm-up

Find
$$f(x)$$
 if $f''(x) = \cos(x)$, $f'(o) = 1$, $f(y_0) = z$
 $f'(x) = \int f'(x)dx = \int \cos(x)dx = \sin(x) + c$
 $g'(o) = 1 = \sin(0) + c = c = D$ $f'(x) = \sin(x) + 1$
repeat:
 $f(x) = \int f'(x)dx = \int \sin(x) + 1 dx = -\cos(x) + x + c$
 $f(x) = \int f'(x)dx = \int \sin(x) + 1 dx = -\cos(x) + x + c$
 $f(x) = \int f'(x)dx = \int \sin(x) + 1 dx = -\cos(x) + x + c$
 $f(x) = -\cos(x) + x + \partial - \frac{\pi}{2}$
 $f(x) = -\cos(x) + x + \partial - \frac{\pi}{2}$
Follow - up: Suppose a particle is accelerating according to $a(t) = \cos(t)$ where t mensured in seconds
is the united a a(t) are $\frac{8t}{52}$. Suppose the initial velocity is $\frac{1}{12} + \frac{1}{2} + \frac{1$

Find a formula for the position of the particle and use it
to find the height Q time
$$t = \pi (\chi 3.14 \text{ seconds})$$

By work above $s(t) = -\cos(t) + t + \partial - \pi = 3/2$; $= -\cos(\pi) + \pi + \partial - \pi = 3 + \pi = 4.5$ st

$$1 \int \frac{5}{\sqrt{1-z^2}} dz = \frac{N^2}{4\pi^2} dz = \frac{1}{\sqrt{1-x^2}} dz = \frac{N^2}{4\pi^2} \frac{1}{\sqrt{1-x^2}} dz = \frac{1}{\sqrt{1-x^2}} \frac{1}{\sqrt{1-x^2}} dz =$$

Chollinge

$$\int \sqrt{\frac{e^{x}}{\sqrt{1+e^{x}}}} dx \qquad u = 1+e^{x}} = \int \frac{e^{x}}{\sqrt{u}} \cdot \frac{1}{e^{x}} du \qquad i_{1}e^{x}, \quad \int e^{u} du = \int \frac{1}{\sqrt{u}} du = \int \frac{1}{e^{x}} du \qquad u = \sin x \qquad = \int e^{u} du \qquad u = \sin x \qquad = \int e^{u} du \qquad u = \sin x \qquad = \int e^{u} du \qquad u = \sin x \qquad = \int e^{u} du \qquad u = \sin x \qquad = \int e^{u} du \qquad u = \sin x \qquad = \int e^{u} du \qquad u = \sin x \qquad = \int e^{u} du \qquad u = \sin x \qquad = \int e^{u} du \qquad u = \sin x \qquad = \int e^{u} du \qquad u = \sin x \qquad = \int e^{u} du \qquad u = \sin x \qquad = \int e^{u} du \qquad u = \sin x \qquad = \int e^{u} du \qquad u = \sin x \qquad = \int e^{u} du \qquad u = \sin x \qquad = \int e^{u} du \qquad u = \sin x \qquad = \int e^{u} du \qquad u = \sin x \qquad = \int e^{u} du \qquad u = \sin x \qquad = \int e^{u} du \qquad = \int u^{\frac{1}{2}} + c \qquad = \partial u^{\frac{1}{2}} + c \qquad = \partial u^{\frac{1}{2}} + c \qquad = \partial (1+e^{x})^{\frac{1}{2}} + c \qquad = \partial (1+e^{x})^{\frac{1}{2}} + c \qquad = \partial (1+e^{x})^{\frac{1}{2}} + c \qquad = \int (1+e^{x})^{\frac$$