```
Tue - Wk 10 -
 today (5.3) the Indefinite Integral ( general anti-derivative)
                                                            * ( infinite family of fenctions)
     {(x) dx = a function*
                    = all possible functions whose derivative is f(x)
 EX (2dx = all femations whose derivative is = 2.
             = 2x + 15^{3}
             in general
              = 2x + C w/c = constant
EX = sin(X) + C
    \left(\sin(x)\,dx = -\cos(x) + C\right)
    \int \sec(x)\tan(x) dx = \sec(x) + C
                                            domain of In in positive
EX \left(\frac{1}{X}dx = \left(x^{-1}dx = ln | x\right) + C\right)
                                                                       \left(\frac{1}{2}\sqrt{4}x\left(x^{2}\right) = \frac{1}{2}\cdot2x\right)
\frac{1}{2}\sqrt{4}x\left(\frac{1}{2}x^{2}\right) = x
```

Ex
$$\int x dx = \frac{1}{2}x^{3} + C$$

Ex $\int x^{3} dx = \frac{1}{3}x^{3} + C$

Power

Rule

for

Integration

Ex
$$\int x^3 dx = \frac{4}{x^4} + C$$

$$\left(\frac{3}{3} + \left(\frac{3}{3}\right) = \frac{3}{3} + \frac{3}{3}$$

Functions	Their Anti-derivative
\times^{n} $(n \neq -1)$	$\frac{\chi^{n+1}}{\chi^{n+1}}$
X'= X	In(X)
sin(x)	- cos(×)
(os(x)	Sin(X)
Sec(x)tan(x)	&c(X)
&e c (X)	tan(x)
e^{\star}	e [×]
csc3(X)	cot (x)

Functions	Their Anti-derivative
1 1+ x ²	tañ'(x)
1 1-x2	sin'(x)
1×11/1×2-1	<u>ς</u> ς ε ⁻¹ (χ)

$$\int \sqrt{x^{3}} + x = \int \sqrt{x^{3}} dx + \int \sqrt{x^{3}} dx$$

Use "break it up property": $((t_{(N)} + g_{(X)})) dx = \int t_{(N)} dx + \int g_{(X)} dx$

Note! Not true for mult, $\frac{1}{5} div$.

$$= \int (x^{3})^{\frac{1}{3}} dx + \int x dx = \int \frac{x^{3}}{3} + \frac{a}{3} + \frac{a}{$$

Indefinite Integral = junction (family) (f(x)dx

why not keep (in Sofix)dx

$$\int_{1}^{4} x^{3} dx = \frac{3}{3} + C \Big|_{1}^{4} = \frac{4^{3}}{3} + C - \left(\frac{1^{3}}{3} + C\right) = \frac{4^{3}}{3} - \frac{1}{3}$$

$$C's \ cancel$$

$$\int_{7}^{8} \frac{dx}{x} = \int_{7}^{8} \frac{1}{x} dx$$

$$I = \int_{0}^{9} |x^{2} - 1| dx = \int_{0}^{9} |x^{2} - 1| dx + \int_{0}^{9} |x^{2} - 1| dx$$

$$\int_{0}^{1} (x^{2} - 1) dx + \int_{0}^{9} |x^{2} - 1| dx$$

$$\int_{0}^{1} (x^{2} - 1) dx + \int_{0}^{9} |x^{2} - 1| dx$$

$$|x^{3} - 1| = \int_{0}^{9} |x^{2} - 1| dx + \int_{0}^{9} |x^{2} - 1| dx$$

$$|x^{3} - 1| = \int_{0}^{9} |x^{2} - 1| dx + \int_{0}^{9} |x^{2} - 1| dx$$

$$|x^{3} - 1| = \int_{0}^{9} |x^{2} - 1| dx + \int_{0}^{9} |x^{2} - 1| dx$$

$$|x^{3} - 1| = \int_{0}^{9} |x^{2} - 1| dx + \int_{0}^{9} |x^{2} - 1| dx$$

$$|x^{3} - 1| = \int_{0}^{9} |x^{2} - 1| dx + \int_{0}^{9} |x^{2} - 1| dx$$

$$|x^{3} - 1| = \int_{0}^{9} |x^{2} - 1| dx + \int_{0}^{9} |x^{2} - 1| dx$$

$$|x^{3} - 1| = \int_{0}^{9} |x^{2} - 1| dx + \int_{0}^{9} |x^{2} - 1| dx$$

$$|x^{3} - 1| = \int_{0}^{9} |x^{2} - 1| dx + \int_{0}^{9} |x^{2} - 1| dx$$

$$|x^{3} - 1| = \int_{0}^{9} |x^{2} - 1| dx + \int_{0}^{9} |x^{2} - 1| dx$$

$$|x^{3} - 1| = \int_{0}^{9} |x^{2} - 1| dx + \int_{0}^{9} |x^{2} - 1| dx$$

$$|x^{3} - 1| = \int_{0}^{9} |x^{2} - 1| dx + \int_{0}^{9} |x^{2} - 1| dx$$

$$|x^{3} - 1| = \int_{0}^{9} |x^{2} - 1| dx + \int_{0}^{9} |x^{2} - 1| dx$$

$$|x^{3} - 1| = \int_{0}^{9} |x^{2} - 1| dx + \int_{0}^{9} |x^{2} - 1| dx$$

$$|x^{3} - 1| = \int_{0}^{9} |x^{2} - 1| dx + \int_{0}^{9} |x^{2} - 1| dx$$

$$|x^{3} - 1| = \int_{0}^{9} |x^{2} - 1| dx$$

$$|x^{3} - 1| = \int_{0}^{9} |x^{2} - 1| dx$$

$$|x^{3} - 1| = \int_{0}^{9} |x^{2} - 1| dx$$

$$|x^{3} - 1| = \int_{0}^{9} |x^{2} - 1| dx$$

$$|x^{3} - 1| = \int_{0}^{9} |x^{2} - 1| dx$$

$$|x^{3} - 1| = \int_{0}^{9} |x^{2} - 1| dx$$

$$|x^{3} - 1| = \int_{0}^{9} |x^{2} - 1| dx$$

$$|x^{3} - 1| = \int_{0}^{9} |x^{2} - 1| dx$$

$$|x^{3} - 1| = \int_{0}^{9} |x^{2} - 1| dx$$

$$|x^{3} - 1| = \int_{0}^{9} |x^{2} - 1| dx$$

$$|x^{3} - 1| = \int_{0}^{9} |x^{2} - 1| dx$$

$$|x^{3} - 1| = \int_{0}^{9} |x^{2} - 1| dx$$

$$|x^{3} - 1| = \int_{0}^{9} |x^{3} - 1| dx$$

$$|x^{3} - 1| = \int_{0}^{9} |x^{3} - 1| dx$$

$$|x^{3} - 1| = \int_{0}^{9} |x^{3} - 1| dx$$

$$|x^{3} - 1| = \int_{0}^{9} |x^{3} - 1| dx$$

$$|x^{3} - 1| = \int_{0}^{9} |x^{3} - 1| dx$$

$$|x^{3} - 1| = \int_{0}^{9} |x^{3} - 1| dx$$

$$|x^{3} - 1| = \int_{0}^{9} |x^{3} - 1| dx$$

$$|x^{3} - 1| = \int_{0}^{9} |x^{3} - 1| dx$$